

 Programming Guide

 Document Number 000-20000-400-12-201505

For Products: OmniDriver and SPAM
Document: 000-40000-010-02-201505

000-20000-400-12-201505 i

Table of Contents

About This Manual ... vii
Document Purpose and Intended Audience .. vii
What’s New in this Document ... vii
Document Summary .. vii
Product-Related Documentation ... viii

Upgrades ... viii

Chapter 1: Introduction ... 1
Overview ... 1

OmniDriver Is Cross-platform .. 1
OmniDriver Features ... 2

OmniDriver Architecture .. 4
OmniDriver is Written in Java .. 4
LabVIEW Development ... 4
USB Port Access ... 5
Wrapper Object ... 5

Chapter 2: OmniDriver Installation ... 7

Overview ... 7

Installing .NET Framework .. 8

Downloading from the Ocean Optics Website .. 9
Installing on a Windows Platform .. 9
Installing on a Mac Platform .. 11
Installing on a Linux Platform .. 12

Retrieving from a DVD ... 13

Installing the Spectrometer Driver Software ... 14
Installing Driver Software on Windows XP (64-bit) ... 14
Installing the Driver Software on Windows 7 (64-bit) .. 16
QE Pro Spectrometer Device Driver Installation ... 17
Uninstalling an Incorrect Driver ... 22

Installing Java .. 22
Java JDK ... 23

Installation Troubleshooting Notes ... 23

Chapter 3: Basic Sequence of Operations 25

Overview ... 25

Create/Initialize the Wrapper Object .. 25

Table of Contents

ii 000-20000-400-12-201505

Open All Spectrometers ... 26

Get Identification Information ... 27

Set Acquisition Parameters ... 27

Acquire a Spectrum ... 27

Close All Spectrometers .. 28

Chapter 4: Acquisition Parameters .. 29

Overview ... 29

Auto Toggle Strobe Lamp Enable .. 29

Boxcar Width ... 29

Correct for Detector Nonlinearity ... 30

Correct for Electrical Dark .. 30

Integration Time... 30

Scans to Average .. 31

Strobe Enable .. 31

Chapter 5: Optional Features .. 33

Overview ... 33
Analog In.. 34
Analog Out ... 34
Board Temperature ... 34
Continuous Strobe ... 34
External Trigger Delay ... 36
GPIO (General Purpose I/O) ... 36
I2C Bus Communications Feature .. 38
Irradiance Calibration Factor ... 40
Nonlinearity Correction .. 40
SPI Bus .. 40
Single Strobe ... 40
Stray Light Correction .. 42
Thermo Electric Cooling .. 42
Version... 43

Chapter 6: External Trigger Modes ... 45

Overview ... 45

Mode 0: Normal Mode ... 45

Mode 1: External Software Trigger Mode .. 45

Mode 2: External Synchronization Trigger Mode ... 46

Mode 3: Hardware Trigger Mode ... 46

Mode 4: Single-Shot Trigger Mode (Quasi Realtime Mode) ... 46

 Table of Contents

000-20000-400-12-201505 iii

Chapter 7: High-Speed Data Acquisition ... 47

Overview ... 47

Function Call Sequence ... 47

Chapter 8: Using OmniDriver with Multithreaded Applications 49

Overview ... 49
Exceptions to General Guidelines ... 50

ADC1000-USB A/D Converter Notes ... 50

LabVIEW Notes ... 50
Samples ... 51

Chapter 9: Developing Your OmniDriver Application 53

Overview ... 53

NetBeans Setup on Linux .. 53

Developing in C/C++ (all IDEs) .. 54
Required Header Files ... 54
Required Library Files ... 55
Java Requirement ... 55
Specify Your OS Platform .. 55
Interface Choices ... 55

Developing with Borland C++ Builder .. 56

Setting Up the Environment... 56

Creating a New Project .. 57

Developing in C with the National Instruments CVI C Compiler 58

Developing with Microsoft Visual C++ 6.0 .. 59
Specifying the Location of the Java Header Files ... 59
Specifying the Location of the OmniDriver32.dll ... 59
Handling the "long long" Data Type Issue ... 60

Developing in C# ... 60
Creating a New C# VS2005 Project that Uses the .NET Interface to OmniDriver 61
Deploying Your C# Application .. 61

Developing in Delphi .. 61

Developing in Java .. 63

Developing in LabVIEW ... 63

Developing in VBA ... 64
Writing a VBA Function ... 65
Accessing the OmniDriver COM Object from VBA.. 65
Passing Arguments into Your VBA Function ... 65
Test Running Your VBA Function ... 65

Developing in Visual Basic .. 66
Using the .NET Interface to OmniDriver .. 66
Using the COM Interface to OmniDriver .. 66

Table of Contents

iv 000-20000-400-12-201505

Developing with Microsoft Visual Basic 6.0 ... 66

Modifying Your COM Application to Run on 64-bit Windows using the .NET Interface to
OmniDriver .. 67

Troubleshooting Your Application ... 68
Test Application ... 68

Modifying Your C++ Project Settings for 64-bit Windows ... 68
Create an x64 Platform Option .. 68
Change Your include/header File Location ... 69
Change Your Library Dependencies ... 69
Output EXE Location ... 69

Chapter 10: Sample Programs .. 71

Overview ... 71

C Samples ... 71

C++ Samples ... 72

C# Samples ... 74

Delphi Samples ... 76

Java Samples .. 76

LabVIEW Samples .. 79

Visual Basic Samples .. 80

SPAM Samples ... 81

Other Samples .. 82

Chapter 11: Redistributing OmniDriver with Your Application 83

Overview ... 83
Deploying Your C# Application .. 84

For Mac Users ... 84

For Linux Users ... 84

Chapter 12: Wrapper API Reference ... 85

Overview ... 85

getCalibrationCoefficientsFromEEProm() .. 85

highSpdAcq_AllocateBuffer() ... 85

highSpdAcq_GetNumberOfSpectraAcquired() ... 86

highSpdAcq_GetSpectrum() .. 86

highSpdAcq_GetTimeStamp() ... 86

highSpdAcq_IsSaturated() ... 87

highSpdAcq_StartAcquisition() .. 87

highSpdAcq_StopAcquisition() .. 87

setBoxcarWidth() ... 88

setCalibrationCoefficientsIntoBuffer() .. 88

setCalibrationCoefficientsIntoEEProm() ... 88

 Table of Contents

000-20000-400-12-201505 v

setIntegrationTime() .. 90

Chapter 13: SPAM Library ... 91

Overview ... 91
Important Tips .. 92

C++ Sample ... 92

CSharp Sample ... 93

Appendix A: FAQs ... 97

How fast can I acquire spectra? ... 97

Why doesn’t getSpectrum() return when I think it should? ... 97

If I change spectrometer models, do I need to change my program? 98

Can my 32-bit OmniDriver application run on 64-bit Windows 7? 98

Can I use Visual Basic 6.0 (VB6) on 64-bit Windows 7? .. 99

What happens if the timeout period is shorter than the integration time? 99

What happens in the following scenario? ... 99

Appendix B: Upgrading Your Application for OmniDriver 1.6 101

Overview ... 101

C/C++ Applications Using the C++ Interface to OmniDriver ... 101
Note for 64-bit platform .. 102
Troubleshooting ... 102

C# Applications ... 102

C++ Applications Using the COM Interface to OmniDriver ... 103

Visual Basic COM Applications .. 103

VB6 Applications ... 104
VB6 Applications Using the COM Interface ... 105
VB6 Applications Using the “C” Interface .. 106

Appendix C: Programming the ARCoptix Spectrometer 109

Overview ... 109

Example .. 109

Appendix D: Controlling Memory Size ... 113

Overview ... 113

Description .. 113

Appendix E: Improving OmniDriver Performance on Windows 115

Table of Contents

vi 000-20000-400-12-201505

Overview ... 115

Suggestions ... 115

Appendix F: Using the Timeout Feature .. 117

Overview ... 117

Installation ... 117

IMPORTANT: Converting to the WinUSB Driver (32-bit systems only) 117

Manually Switching Your Spectrometer Over to the WinUSB Driver 118

Programming the Timeout Feature .. 121
Example of Typical Usage of the Timeout Feature ... 121

Timeout Feature Troubleshooting Notes .. 122

Appendix G: Customized Branding of OmniDriver 123

000-20000-400-12-201505 vii

About This Manual

Document Purpose and Intended Audience

This document provides you with an installation and operating instructions for OmniDriver.

What’s New in this Document

This version of the OmniDriver Programming Guide is updated for Release 2.38.

Document Summary

Chapter Description

Chapter 1: Introduction Provides an overview of the OmniDriver/SPAM software.

Chapter 2: OmniDriver Installation Contains instructions for installing OmniDriver/SPAM on a
Windows, Mac or Linux platform from the Ocean Optics
website or from the OmniDriver software DVD.

Chapter 3: Basic Sequence of
Operations

Describes the typical sequence of operations that the
application must perform to control a spectrometer and
acquire data.

Chapter 4: Acquisition Parameters Presents a complete list of all available acquisition
parameters.

Chapter 5: Optional Features Lists and describes the optional capabilities offered by some
spectrometers.

Chapter 6: External Trigger Modes Lists and describes the trigger modes available on various
spectrometers.

Chapter 7: High-Speed Data Acquisition Provides the function call sequence for using the High-speed
Data Acquisition mode.

Chapter 8: Using OmniDriver with
Multithreaded Applications

Describes how to use OmniDriver with multi-threaded
applications.

Chapter 9: Developing Your OmniDriver
Application

Provides information on setting up the development
environment for your specific programming language to
develop OmniDriver applications.

Chapter 10: Sample Programs Contains sample programs for C, C++, C#, Delphi, Java,
LabVIEW and Visual Basic.

About This Manual

viii 000-20000-400-12-201505

Chapter Description

Chapter 11: Redistributing OmniDriver
with Your Application

Contains information for redistributing the runtime version of
OmniDriver.

Chapter 12: Wrapper API Reference Provides detailed information about a few of the wrapper
functions.

Chapter 13: SPAM Library Contains information about the SPAM library.

Appendix A: FAQs Lists frequently asked questions and answers.

Appendix B: Upgrading Your Application
for OmniDriver 1.6

Describes how to upgrade C/C++, Visual Basic, and VB6
applications for OmniDriver 1.6.

Appendix C: Programming the ARCoptix
Spectrometer

Provides information for programming the ARCoptix ANIR
Series of Fourier Transform Spectrometers (FTS).

Appendix D: Controlling Memory Size Provides information for controlling the memory size of Java
and your application.

Appendix E: Improving OmniDriver
Performance on Windows

Contains suggestions for improving the performance of
OmniDriver on Windows systems.

Appendix F: Using the Timeout Feature Provides instructions for installing the Timeout feature.

Appendix G: Customized Branding of
OmniDriver

Describes how to change the OmniDriver software name and
company to customize it for your own company.

Product-Related Documentation

You can access documentation for Ocean Optics products by visiting our website at

http://www.oceanoptics.com. Select Support Technical Documents, then choose the appropriate

document from the available drop-down lists.

 Detailed instructions for OceanView Software is located at: http://oceanoptics.com/wp-

content/uploads/OceanViewIO.pdf

Upgrades
Occasionally, you may find that you need Ocean Optics to make a change or an upgrade to your system.

To facilitate these changes, you must first contact Customer Support and obtain a Return Merchandise

Authorization (RMA) number. Please contact Ocean Optics for specific instructions when returning a

product.

http://www.oceanoptics.com/
http://oceanoptics.com/wp-content/uploads/OceanViewIO.pdf
http://oceanoptics.com/wp-content/uploads/OceanViewIO.pdf

000-20000-400-12-201505 1

Chapter 1

Introduction

Overview
OmniDriver® is a powerful Software Developer’s Kit (SDK) for Windows, Mac and Linux operating

systems that allows you to easily write custom software solutions for your Ocean Optics USB

spectrometers. Ocean Optics is the first and only provider in the optical sensing industry to offer this

level of cross-platform compatibility.

OmniDriver provides an Application Programming Interface (API) that is the culmination of our best

software driver packages and allows you to harness the power of high-speed data acquisition in a single

cross-platform driver. Integrate OmniDriver into your own software application for complete control over

USB spectrometers and devices in virtually any OS environment.

OmniDriver is sold as two separate but interrelated products:

 OmniDriver. This product gives you the functions you need to develop applications which

communicate with and control Ocean Optics spectrometers. With this product you can connect to

spectrometers, set acquisition parameters such as integration time, and acquire spectra.

 SPAM (Spectral Processing and Math). This add-on product gives you functions to perform

spectral processing such as peak-finding, radiometric color analysis, etc. You can use the

functions in the SPAM library to process spectral data coming from any USB spectrometer,

including non-Ocean Optics models. However, normally you will also want the OmniDriver

product, which simplifies the process of obtaining spectral data from Ocean Optics spectrometers.

See the Spectral Processing And Math (SPAM) Module Programming Guide for more

information (see Product-Related Documentation).

OmniDriver Is Cross-platform

OmniDriver was created in the Java environment and includes native libraries for select Windows,

Macintosh and Linux operating systems. Using OmniDriver, you can develop robust applications to

control multiple Ocean Optics USB spectrometers across these different operating systems. Ocean Optics

is the first and only provider in the optical sensing industry to offer this level of cross-platform

compatibility.

Multi-Language Support

You can develop OmniDriver-based applications in the following languages.

 “C”

 C++ (Microsoft Visual Studio)

 C#

1: Overview

2 000-20000-400-12-201505

 Borland Delphi/Pascal

 Java

 LabVIEW (Windows only, Version 7.1 or greater)

 Visual Basic and VBA (Visual Basic for Applications)

Multiple Interface Methods

 “C” style calling convention (all platforms)

 C++ (available with Microsoft Visual Studio/Windows, also with gcc/Linux)

 COM object interface (Windows only)

 .NET assembly interface

Applications written in Java are environment-independent; they can work across all operating systems.

OmniDriver is not only platform-independent, but also spectrometer-independent; the same Java code

works with all Ocean Optics USB spectrometers.

OmniDriver Features

OmniDriver offers the following features:

HighResTiming

Time stamping that is accurate to sub-microsecond performance; great for chemical kinetics and other

applications that require complex time accountability.

LabView Support

OmniDriver provides drivers for LabVIEW (Version 7.1 or greater) to enable you to configure Ocean

Optics spectrometers as real-time virtual instruments in National Instruments' LabVIEW graphical

programming environment.

Support for Ocean Optics USB devices

 ADC1000-USB (including Deep Well)

 Apex

 Curie

 Flame

 HR2000

 HR2000+

 HR4000

 Jaz

 Maya2000

 Maya2000Pro

 MayaLSL

 MMS-Raman

 NIR256

 NIR512

 NIRQuest

 1: Overview

000-20000-400-12-201505 3

 QE65000

 QE65 Pro

 QE Pro

 Spark

 STS

 Torus

 USB2000

 USB2000-FLG

 USB2000+

 USB4000

 Ventana

Note

OmniDriver does NOT support PCI or ISA products.

Operating System Support

 Windows:

– Windows XP, Vista, Windows 7, Windows 8 and 8.1

– 64-bit versions of XP, Vista, and Windows 7

 Mac:

– OSX 10.5 or later

 Linux:

– Many x86 distributions are supported

– Kernel 2.4.20 and libusb 0.1.10 or later are required

Note

Although OmniDriver supports the Linux and Mac OS/X platforms in addition to

Windows, this programming guide is written from the point of view of a Windows

developer. Often the differences between platforms is merely superficial (for example,

Linux has “shared object” (*.so) files, and the Mac has “*.dylib” files, whereas Windows

has “dynamic link libraries” (*.dll)). Where differences between platforms are more

significant, details are broken out into sections for each platform.

Measurement Corrections:

 Detector nonlinearity

 Electrical dark (automatic baseline removal)

 Stray light

 Boxcar smoothing (averaging across pixels)

 Averaging multiple scans

1: Overview

4 000-20000-400-12-201505

Control of the following extended functions (depending on spectrometer model):

 Strobe enable

 Thermo-electric cooling (TEC), and reading detector and PCB temperatures

 Gated fluorescence mode

 Analog output (4-20mA current output for LS-450 and soon the AOUT; voltage out for HR4000)

 Analog input for the supported spectrometers (voltage only)

 Digital (TTL) input/output (control of GPIO pins)

 Setting external trigger modes

 Reading out wavelength calibration

 Setting single and continuous strobe delays

OmniDriver Architecture
You can access OmniDriver functionality via two DLL files:

 OmniDriver32.dll (or OmniDriver64.dll on 64-bit systems) contains the functions which allow

you to control all spectrometer settings and acquire spectra. For example, you can set the

integration time, scans-to-average, enable electric dark correction, etc.

 SPAM32.dll (or SPAM64.dll on 64-bit systems) contains higher-level functions for analyzing

the spectra. For example, this .dll provides functions to perform peak-finding, color space

calculations, and energy output measurements.

These two files can be purchased separately (as OmniDriver and SPAM), or together (OMNI+SPAM).

There is a third DLL file, common32.dll, which contains functions used internally by the other DLL files.

These functions are not called directly by the user.

OmniDriver is Written in Java
The bulk of OmniDriver’s capabilities are implemented in the Java language. This is key to OmniDriver’s

ability to run on multiple platforms. The functions in the above-mentioned DLLs merely invoke

corresponding Java functions. These functions in the DLLs then translate the parameters of each function

into the form expected by Java, and then invoke the underlying Java method. As a consequence, Java

developers can ignore the DLLs and access the Java objects and methods directly from the

OmniDriver.jar and SPAM.jar files.

OmniDriver comes bundled with the Java 1.6 Run-time Engine (JRE). Therefore, you do not need to

install Java on your PC unless you are developing applications in the C/C++ or Java languages. In this

case you will need to install the Java 1.6 JDK, which contains header files required by C/C++.

LabVIEW Development
For LabVIEW developers, OmniDriver provides a set of LLB/VI files which expose OmniDriver’s

functionality in a fashion that is natural to the LabVIEW development environment. Behind the scenes,

these LLB/VI’s invoke the methods contained in the DLL files that comprise OmniDriver.

 1: Overview

000-20000-400-12-201505 5

USB Port Access
Most Ocean Optics spectrometers communicate with a computer via the USB port. One notable exception

is the Jaz unit, which can communicate not only via USB, but also via Ethernet. To access the USB ports,

we provide an additional DLL named NatUSB.dll. The methods in this DLL are invoked internally from

the Java implementation of OmniDriver. The user should never invoke any of the methods in NatUSB.dll

directly.

Wrapper Object

OmniDriver contains classes which represent each distinct Ocean Optics spectrometer (e.g., USB2000+,

HR4000, etc.). However, all access to your spectrometers, regardless of model, should be through the

Wrapper object. Your application should instantiate the Wrapper object and then use the methods of this

Wrapper object to connect to and control your spectrometer. The methods belonging to the Wrapper

object are collectively called the Wrapper API.

1: Overview

6 000-20000-400-12-201505

000-20000-400-12-201505 7

Chapter 2

OmniDriver Installation

Overview
OmniDriver can be downloaded from the Ocean Optics website’s Software Downloads page, or retrieved

from the CD that you received with your purchase of the software. In either case, you will need the

password to complete the installation process. If you have a CD with the OmniDriver software, the

password is located on the back of the CD jacket.

This chapter contains instructions for installing OmniDriver on each of the following operating systems:

 Microsoft Windows – XP, Vista, 7, 8, 8.1; 32-bit and 64-bit

 Mac – OS X version 10.5 or later on Intel processor

 Linux – Any version released for an x86 or amd64 platform since 2010

 Example: CentOS(Version 5.5), and Ubuntu (version 10.4LTS)

All sample applications are now located in a separate installer that can be downloaded from our website:

http://www.oceanoptics.com/technical/softwaredownloads.asp. By default, samples are installed

to C:\Ocean Optics\OmniDriverSamplePack – version number.

Note

After you have installed your OmniDriver software, please refer to Installing the

Spectrometer Driver Software.

When the installation process is finished, the following subdirectories will be created beneath the

OmniDriver “home” directory:

Subdirectory Contents

docs Main documentation area

docs\javadocs.omnidriver Javadocs for OmniDriver library functions

docs\javadocs.spam Javadocs for SPAM library functions

docs\javadocs.highrestiming Javadocs for High Resolution Timing functions

docs\javadocs\ooiutils Javadocs for utility functions

http://www.oceanoptics.com/technical/softwaredownloads.asp

2: OmniDriver Installation

8 000-20000-400-12-201505

Subdirectory Contents

_jvm Java Runtime Engine (JRE) used by OmniDriver

include Header files for use with C/C++ application development

LabVIEW *.llb libraries and *.vi files to make the OmniDriver functions available to
LabVIEW applications

OOI_HOME The DLL, LIB, and JAR files which make up the OmniDriver and SPAM
libraries
This directory also contains the Linux *.so files and the MacOSX *.dylib
files.

VisualBasic6_Declarations OmniDriver.bas file for inclusion in VB6 applications that need to use the
“C” interface to the functions in the OmniDriver DLL.

ezusb_driver Windows USB drivers (for 32-bit platforms only)

winusb_driver Windows USB drivers (for 64-bit platforms only)

Once you have installed the software, you’ll want to verify your installation, look at the javadocs

provided to get an idea of how the objects and methods for OmniDriver are organized, and then run a

sample program.

Installing .NET Framework
Before you can install the OmniDriver software, you must ensure that the .NET framework has been

installed. OmniDriver requires version 2.0 or later. You can download the installer for .NET 4.0 from

OmniDriver CD or the Ocean Optics Software Downloads page.

If you attempt to install OmniDriver before .NET has been installed, you will see the error message:

“Error running RegAsm64.exe … : Program ended with an error exit code.”

Do not plug your spectrometer in until after you have installed the software.

► Procedure

1. Run the installer and follow the on-screen prompts.

2. Select which product you wish to install: OmniDriverSPAM, OmniDriver, or SPAM. You may

only check one product.

3. Enter the usual password for installing your OmniDriver product.

4. After successfully completing the installation wizard, plug in your spectrometer and follow the

procedure for installing the necessary driver for your spectrometer.

 2: OmniDriver Installation

000-20000-400-12-201505 9

Downloading from the Ocean Optics Website

Installing on a Windows Platform

Simply download this file and double-click on it in Windows Explorer to begin the installation procedure.

The installer will guide you through the install process. See Installing on a Windows 8.1 32-bit Platform

for more information about that system.

► Procedure

1. Close all other applications running on the computer.

2. Start Internet Explorer.

3. Navigate to http://www.oceanoptics.com/technical/softwaredownloads.asp and click

on the OmniDriver software appropriate for your Windows operating system.

4. Save the software to the desired location. The default installation directory is \Program

Files\Ocean Optics\OmniDriver.

5. The installer wizard guides you through the installation process. The OmniDriver icon

location is Start | Programs | Ocean Optics | OmniDriver | OmniDriver and the

current user’s desktop.

6. Browse to http://www.oceanoptics.com/technical/softwaredownloads.asp.

7. Select the OmniDriver software appropriate for your operating system. The installer wizard

guides you through the installation process.

8. After you have finished installing OmniDriver, you may need to install Java 1.6 JDK on your PC.

(only necessary when developing in C/C++ – see Installing the Spectrometer Driver Software.)

Installing on a Windows 8.1 32-bit Platform

If your operating system is Windows 8.1 32-bit then you will want to run OmniDriver-x.xx-

win32-installer.exe. During the installation you may be prompted with a message shown below.

If so, use the following procedure.

http://www.oceanoptics.com/technical/softwaredownloads.asp
http://www.oceanoptics.com/technical/softwaredownloads.asp

2: OmniDriver Installation

10 000-20000-400-12-201505

► Procedure

1. Click Download and install feature.

2. If the feature fails to install, proceed anyway by clicking Close in the window shown

below. The OmniDriver installation will still continue to completion regardless of this

update.

 2: OmniDriver Installation

000-20000-400-12-201505 11

Note

If this feature could not be installed, it is important to note that referencing

NETOmniDriver-NET40.dll is needed for any .NET development (for example, using

Visual Studio 2010, start a new C# Console project).

Under the reference section, add a local reference using Browse. Navigate to c:\program

files\ocean optics\omnidriver\OOI_HOME, and then select NetOmniDriver-NET40.dll.

Installing on a Mac Platform

OmniDriver for Mac OSX is distributed as an “Application bundle”, compressed into a *.tar.gz file.

► Procedure

The basic procedure for installing OmniDriver on the Mac is as follows:

1. Download the OmniDriver-n.nn-macosx32-development-installer.app.tar.gz file to a folder

on your Mac. (n.nn is the version number of OmniDriver).

2. Untar the file using a command like the following:

tar xvf OmniDriver-2.11-macosx32-development-installer.app.tar.gz

This will create a new “folder” in the current directory containing the application bundle.

3. Using Finder, double-click on the new application bundle “folder”. This will invoke the

OmniDriver installer.

You will be prompted for a password (supplied by your Ocean Optics sales/distributor).

4. The installer will perform the following operations:

 a. OmniDriver will be installed to /Applications/OmniDriver-n.nn (you may override this

location).

 b. The “OOI_HOME” environment variable will be automatically defined. This environment

variable points to the OOI_HOME folder where you installed OmniDriver. Typically it appears

as “/Applications/OmniDriver-2.11/OOI_HOME”.

 c. The OOI_HOME folder under the OmniDriver installation folder will be added to your

system PATH environment variable.

 d. Symbolic links to required *.dylib files are created. Depending on the flavor of OmniDriver

you are installing, you will see two or three of the following symlinks:

i. /usr/lib/libcommon.dylib

/Applications/OmniDriver-n.nn/OOI_HOME/libcommon.dylib

ii. /usr/lib/libOmniDriver.dylib

/Applications/OmniDriver-n.nn/OOI_HOME/libOmniDriver.dylib

iii. /usr/lib/libSPAM.dylib

/Applications/OmniDriver-n.nn/OOI_HOME/libSPAM.dylib

5. To avoid confusion, it is a good idea to reboot your system after completing the installation. This

will ensure that changes to environment variables have taken effect.

2: OmniDriver Installation

12 000-20000-400-12-201505

6. Verify successful installation by compiling and running the C++ sample application, located in

/Applications/OmniDriver-n.nn/samples/cpp/GPP_SpectrumTest_Mac.

There is no need to install Java on the Mac because the required version of Java is already installed as an

integral part of Mac OS X (versions 10.4 Tiger, and later). If you are running an earlier version of Mac

OS X, you will need to upgrade your Java installation to at least Java 1.5.

Installing on a Linux Platform

We provide a convenient installer for OmniDriver on the Linux family of operating systems. For Linux

systems, download the OmniDriver-n.nn-linuxMM-development-installer.bin file (where x.xx is the

version number and MM is either 32 or 64, depending on the architecture of your Linux hardware). We

also provide redistributable installers which contain the minimal OmniDriver files needed to run your

application on an end-user PC. The redistributable installers may be freely distributed, and they do not

require a password. You may need to chmod the file to make it executable. Then run it and follow the

prompts.

Note

When using OmniDriver on x64 Linux systems, you must use version 1.6.0_01 (1.6

update 1) of the Java JVM. Failure to do so will result in a segmentation fault when you

attempt to run your application. This version of the JVM is now bundled with the

OmniDriver installer on Linux x64 systems. Ensure that the following environment

variables are defined when you build and/or run your application:

 JAVA_HOME=${OMNIDRIVER_HOME}/_jvm

 JDK_INCLUDE_FILE_ROOT=$HOME/jdk1.6.0_01 (or wherever you installed the

Java JDK)

JVM_ROOT=${OMNIDRIVER_HOME}/_jvm

LD_LIBRARY_PATH=$OOI_HOME:$OMNIDRIVER_HOME/_jvm/lib/amd64/server

The installer will automatically define the OOI_HOME and OMNIDRIVER_HOME

environment variables for you.

► Procedure

After the installer has finished, perform the following steps to verify that the installation was

successful:

1. Plug in an Ocean Optics USB spectrometer into the USB port of your Linux-based computer.

2. Open a terminal window.

3. Run the use the lsusb command to verify that Linux sees your device. Your spectrometer will

have an ID that begins with 2457. This is the Ocean Optics vendor ID.

If the computer did not detect your spectrometer, you must perform the following additional steps. These

steps will install a rules file to tell Linux which driver to use to communicate with Ocean Optics

spectrometers.

 2: OmniDriver Installation

000-20000-400-12-201505 13

► Procedure

To install a rules file:

1. Open a terminal window.

2. Copy the file 10-oceanoptics.rules from the drivers directory of the OmniDriver installation area

to /etc/rules.d (or /etc/udev/rules.d on Ubuntu x64).

3. Restart udev.

On Fedora and similar Linux distros, you can restart udev with the following sequence of

commands:

 a. udevcontrol reload_rules

 b. udevstart (on Ubuntu: restart udev or service udev restart)

4. If the previous command does not successfully restart udev, you will need to reboot your system.

After you have finished installing OmniDriver, you may need to install Java 1.6 JDK on your PC. This is

only necessary if you are developing in C/C++.

Troubleshooting Your Linux Installation

On some newer distributions, problems occur when SeLinux is set to "enforcing". If you get an error

containing the message: Cannot restore segment prot after reloc: Permission denied, you should issue

this command: hcon –t textrel_shlib_t $OMNIDRIVER_HOME/_jvm/lib/i386/client/libjvm.so. This

change only impacts OmniDriver applications.

Alternatively, to permanently change the SeLinux setting for all applications, edit the

/etc/sysconfig/selinux file as ”root”, and change the line that says:
:

 SELINUX=enforcing

to:

 SELINUX=permissive

or:

 SELINUX=disabled

You must reboot your computer after making this change.

Retrieving from a DVD
Your OmniDriver software may be shipped to you from Ocean Optics on a separate DVD labeled

OmniDriver/SPAM Spectroscopy Development Platform. You will need the password located on the

jacket of the CD containing your OmniDriver software to complete the installation.

Note

The redistributable files and Linux legacy files are only available from the Ocean Optics

ftp site. The DVD contains the full release files.

2: OmniDriver Installation

14 000-20000-400-12-201505

► Procedure

1. Insert the DVD that you received containing your OmniDriver software into your computer.

2. Select the OmniDriver software for your computer’s operating platform. Then follow the prompts

in the installation wizard.

Or,

Browse to the appropriate OmniDriver set-up file for your computer and double-click it to start

the software installation. Set-up files are as follows:

 Windows: OmniDriver-1.x-win32-installer.exe (for 32-bit platforms)

 Windows: OmniDriver-1.x-win64-installer.exe (for 64-bit platforms)

 Mac: OmniDriver_1.x_Mac_full_release.dmg

 Linux: OmniDriver-1.x-linux-installer.bin (for 32-bit platforms)

 Linux: OmniDriver-1.x-linux64-installer.bin (for 64-bit platforms)

3. Refer to the appropriate installation section, depending on your operating platform to complete

the installation. See Installing on a Windows Platform, Error! Reference source not found.,

Installing on a Mac Platform, or Installing on a Linux Platform and follow the steps listed in that

section.

Installing the Spectrometer Driver Software
Do not plug your spectrometer in until after you have finished installing the OmniDriver software on your

system. Installing the spectrometer driver software is straightforward for 32-bit systems. Follow the

wizard prompts. The following instructions help guide you through installing the spectrometer driver for

64-bit systems. For 64-bit systems, the procedure differs depending on whether you are using Windows

XP (64-bit) or Windows 7 (64-bit).

For QE Pro spectrometers, see QE Pro Spectrometer Device Driver Installation.

Installing Driver Software on Windows XP (64-bit)

► Procedure

1. When you first plug in your spectrometer, Windows XP displays the following screen. Choose

No, not this time.

 2: OmniDriver Installation

000-20000-400-12-201505 15

2. Choose Install from a list or specific location (Advanced).

3. Navigate to C:\Program Files\Ocean Optics\OmniDriverSPAM\winusb_drivers.

2: OmniDriver Installation

16 000-20000-400-12-201505

4. The Progress window appears. When the installation has completed, the final window appears.

Click Finish to complete the installation.

Installing the Driver Software on Windows 7 (64-bit)

When you first plug in your spectrometer, Windows 7 will attempt (unsuccessfully) to automatically

install the driver for your spectrometer. Click close to close the warning message:

► Procedure

 2: OmniDriver Installation

000-20000-400-12-201505 17

To manually install the new 64-bit driver for your spectrometer:

1. Make sure your spectrometer is plugged in.

2. Select Start | Control Panel | Device Manager.

3. Right-click on your spectrometer and choose Update Driver Software….

4. Choose the Browse my computer for driver software option.

5. Highlight the winusb_driver directory and click OK.

(located at C:\Program Files\Ocean Optics\OmniDriverSPAM\winusb_driver)

6. Click Next. On Windows 7 systems, you will see the following Windows Security warning:

7. Choose Install this driver software anyway.

8. Verify your installation was successful by running the SpectrumTest64.exe application (located in

the C:\Program Files\Ocean Optics\OmniDriverSPAM\OOI_HOME directory).

QE Pro Spectrometer Device Driver Installation

The QE Pro spectrometer requires special device driver installation instructions. Choose the appropriate

instructions listed below depending on the type of Windows system your computer is running.

2: OmniDriver Installation

18 000-20000-400-12-201505

Installing the Driver Software for QE Pro Spectrometers on on Windows XP (32 and
64-bit)

► Procedure

1. When you first plug in your spectrometer, Windows XP displays the following screen. Choose

No, not this time.

2. Choose Install from a list or specific location (Advanced).

 2: OmniDriver Installation

000-20000-400-12-201505 19

3. Navigate to C:\Program Files\Ocean Optics\OmniDriver\winusb_drivers.

4. The Progress window appears. When the installation has completed, the final window appears.

Click Finish to complete the installation.

2: OmniDriver Installation

20 000-20000-400-12-201505

Installing the Driver Software for QE Pro Spectrometers on Windows 7 (32 and 64-bit)

When you first plug in your spectrometer, Windows 7 will attempt (unsuccessfully) to automatically

install the driver for your spectrometer. Click close to close the warning message:

► Procedure

To manually install the new 64-bit driver for your spectrometer:

1. Click Change setting.

2. Select Yes, do this automatically.

 2: OmniDriver Installation

000-20000-400-12-201505 21

The system installs the device driver software.

When the installation process has finished successfully, the following screen displays:

2: OmniDriver Installation

22 000-20000-400-12-201505

The Device Manager reports the following information:

Uninstalling an Incorrect Driver

If you need to uninstall an incorrect driver, use the Windows Device Manager.

► Procedure

1. Right-click on My Computer and choose Properties.

2. Select the Hardware tab and then click the Device Manager button.

3. Expand the Ocean Optics section.

4. Right-click on the offending spectrometer and choose Uninstall.

5. Copy the INF/SYS files.

6. Plug the spectrometer back in and follow the steps given in the Found New Hardware wizard.

Installing Java
OmniDriver comes bundled with a copy of the Java 1.6 Run-time Engine (JRE). Therefore, in most cases,

it is not necessary to manually install Java on your computer. However, if you are developing OmniDriver

applications using the C/C++ languages and you are using the C/C++ interface to OmniDriver, it will be

necessary for you to install the Java 1.6 JDK (Java Developer’s Kit). The Java JDK contains header files

required for C/C++ development. You can obtain the Java 1.6 JDK from www.javasoft.com. There is no

charge for this software.

If you are using the COM or .NET interface to OmniDriver, you do NOT need to install the Java JDK.

http://www.javasoft.com/

 2: OmniDriver Installation

000-20000-400-12-201505 23

Note

Ocean Optics provides a royalty-free, redistributable installer that you may use to install

the run-time components of OmniDriver on your end-user’s computer. This installer

contains all necessary Java files. Therefore, if you use this redistributable installer, you

should never need to perform a separate install of Java on your end-user’s computer.

Java JDK

If you are developing applications in C/C++, or you are using the C/C++ OmniDriver interface, you will

need to download and install the 64-bit version of the Java JDK. This will give you the header files

needed when you compile your OmniDriver application.

OmniDriver comes bundled with its own copy of the 64-bit Java JRE. The only reason you would need

to install the JDK is to access the header files provided by the JDK (required to compile your OmniDriver

application).

Installation Troubleshooting Notes

Problem Possible Cause(s) Suggested Solution(s)

You have installed the latest version of
OmniDriver while your computer is
plugged in to your spectrometer, but your
application does not see it.

The old driver (ezusb.sys) for
your spectrometer must be
uninstalled.

Uninstall the old
spectrometer driver.

You have installed the latest version of
OmniDriver and plugged in your
spectrometer, but your application does
not see it.

The USB device needs to be
enumerated

Unplug the USB cable.
Wait 5 seconds. Plug the
USB cable back in.

UnsatisfiedLinkError message The new WinUSB driver is not
installed yet.

Install the WinUSB
driver.

While installing driver, an error occurs
concerning an incorrect co-installer path.

Device co-installer path is
incorrect.

Change the end of path
from i386 to x86.

2: OmniDriver Installation

24 000-20000-400-12-201505

000-20000-400-12-201505 25

Chapter 3

Basic Sequence of Operations

Overview
This chapter describes the typical sequence of operations that the application must perform to control a

spectrometer and acquire spectra. The functions described here are common to all Ocean Optics

spectrometers. Additionally, more detailed information about each operation is in Chapter 11: Wrapper

API Reference. This chapter provides exact syntax for each method call, including all parameters and data

types.

In addition to the basic capabilities provided by all Ocean Optics spectrometers, there are also a number

of optional features offered by some, but not all, spectrometers. Refer to Optional Features for more

information.

Create/Initialize the Wrapper Object
Before you can control your spectrometer, you must create an instance of the Wrapper object. This is

your gateway into all of the capabilities of the spectrometer.

Caution

Your application must create only ONE instance of the wrapper object. This

wrapper object is then shared by all spectrometers under the control of your

application. Any and all threads created by your application must then share a

reference to the same instance of the wrapper object. Furthermore, there may only

be ONE application (EXE) running on your computer that creates a wrapper object

and controls spectrometers. All interaction with all Ocean Optics spectrometers

attached to your computer must be performed within this one single

executable/application.

C++

Wrapper wrapper; // simply declare an instance

Visual Basic/COM
Dim wrapper as New OmniDriver.CCoWrapper

3: Basic Sequence of Operations

26 000-20000-400-12-201505

Open All Spectrometers
Next, you must query the USB port(s) to discover all attached spectrometers. Behind the scenes, the

openAllSpectrometers() method attempts to communicate with a potential Ocean Optics

spectrometer at every available USB address. If we receive a reply to our query, we conclude that a

spectrometer is present at that USB position.

The openAllSpectrometers() method normally returns an integer from 0 – N, indicating the

number of USB spectrometers it found. If an I/O error occurred, this method returns “-1”. In this case,

you can call the wrapper.getLastException() function to learn more about the nature of the error.

Note for Jaz Network Spectrometer

The Jaz network spectrometer (Jaz connected via Ethernet) communicates over the

internet rather than USB. Obviously we cannot ping every IP address in the world to

discover all Jaz-network devices, so we provide the method

openNetworkSpectrometer(String ipAddress) to access your Jaz network

devices. If you only have Jaz network spectrometers and do not have any USB

spectrometers, you do not need to call the openAllSpectrometers() method. In

this case you only need to call openNetworkSpectrometer(). It does not matter

whether you call openNetworkSpectrometer() before or after calling

openAllSpectrometers(). Once you have opened the Jaz network spectrometer,

you can use all of the other wrapper functions just as you would for any other type of

spectrometer.

C++

int numberOfSpectrometers;

int spectrometerIndex;

spectrometerIndex =

 wrapper.openNetworkSpectrometer("192.168.2.1");

numberOfSpectrometers = wrapper.openAllSpectrometers();

numberOfSpectrometers =

 wrapper.getNumberOfSpectrometersFound();

Visual Basic - COM interface

Dim numberOfSpectrometers as Integer

Dim spectrometerIndex as Integer

numberOfSpectrometers = wrapper.openAllSpectrometers()

If numberOfSpectrometers = -1 Then

 MsgBox("I/O error occurred")

End If

spectrometerIndex =

 wrapper.openNetworkSpectrometer("192.168.2.1");

If spectrometerIndex = -1 Then

 MsgBox("I/O error occurred")

End If

 3: Basic Sequence of Operations

000-20000-400-12-201505 27

Get Identification Information
This step is optional.

If you wish to identify which spectrometer you are communicating with, there are two primary methods

that help identify the spectrometer:

 wrapper.getName(int spectrometerIndex) returns the type of the spectrometer (eg.

“USB4000’).

 wrapper.getSerialNumber(int spectrometerIndex) returns the unique serial

number assigned to your spectrometer.

Set Acquisition Parameters
Normally you will want to set one or more acquisition parameters controlling the conditions under which

spectrum samples are obtained. Chapter 4: Acquisition Parameters lists all available parameters. Here we

show only the most basic acquisition parameter, wrapper setIntegrationTime (int

spectrometerIndex, int integrationTime), and how to set it.

C++

int integrationTime; // units: microseconds

int spectrometerIndex; // 0-n; selects which spectrometer // you are talking

 //to

integrationTime = 5000; // 5 milliseconds

spectrometerIndex = 0;

wrapper.setIntegrationTime(spectrometerIndex, integrationTime);

Visual Basic - COM interface

Dim integrationTime as Integer ‘ units: microseconds

Dim spectrometerIndex as Integer ‘ 0-n; selects which

‘ spectrometer you are talking to

integrationTime = 5000 ‘ 5 milliseconds

spectrometerIndex = 0

wrapper.setIntegrationTime(spectrometerIndex, integrationTime)

Acquire a Spectrum
Now you are ready to acquire a spectrum. A spectrum is simply a one-dimensional array of pixel values,

stored as “doubles”. The number of elements in this array vary for each spectrometer. Dark pixels, if

provided by your spectrometer, are also returned within this array. See the documentation for your

spectrometer to identify the location of the dark and active pixels within this array.

The function call is wrapper.getSpectrum(int spectrometerIndex).

3: Basic Sequence of Operations

28 000-20000-400-12-201505

When you call the getSpectrum()method, the spectrometer will return the next available spectrum to

your application, assuming the spectrometer is in its default normal mode. In this mode, the spectrometer

is continuously acquiring new spectra. Thus, if you happen to call getSpectrum() when the

spectrometer has nearly completed the acquisition of a spectrum, it may very well return almost

immediately, even if you have specified a long integration period. This is normal behavior and is not

indicative of a problem.

Additionally, the duration of your call to getSpectrum() could be delayed if it is necessary for

OmniDriver to take a stability scan. A stability scan is required whenever you change an acquisition

parameter that could affect the data values of the spectrum, such as the integration time. Because the

spectrometer is always acquiring spectra, it must wait until the current spectral acquisition (which is still

using the old integration time) has completed. This spectrum will be “thrown away”. Then the

spectrometer must begin acquiring a second spectrum using your new integration time setting. So

potentially, two complete spectra may have been acquired before getSpectrum() returns to the caller.

See Appendix A, “FAQ: Why doesn’t getSpectrum() return when I think it should” for a more complete

discussion of the timing of the getSpectrum() method.

C++

#include “ArrayTypes.h”

int numberOfPixels;

DoubleArray pixelArray;

int spectrometerIndex; // 0-n

pixelArray = wrapper.getSpectrum(spectrometerIndex)

numberOfPixels = pixelArray.getLength();

// Convert the DoubleArray object into an array of

// double primitives

double* pixelValues = pixelArray.getDoubleValues();

printf(“pixel[0] = %f\n”,pixelValues[0]);

Visual Basic - COM interface

Dim pixels() as Double

Dim spectrometerIndex as Integer ‘ 0-n

pixels = wrapper.getSpectrum(spectrometerIndex)

Console.WriteLine(“pixel(0) = “ & pixels(0))

Close All Spectrometers
When your application is ready to terminate, call the wrapper.closeAllSpectrometers()

method.

000-20000-400-12-201505 29

Chapter 4

Acquisition Parameters

Overview
This chapter presents a complete list of all available acquisition parameters. An acquisition parameter is a

setting that controls some aspect of the conditions under which a spectrum is acquired. All spectrometers

support these acquisition parameters.

Auto Toggle Strobe Lamp Enable
When auto-toggling is enabled (and setStrobeEnable() is set to true), the lamp will be

automatically turned on for the duration of each spectrum acquisition, and then turned off until the next

spectrum is acquired. Use auto-toggling to avoid or delay deterioration of specimens that are sensitive to

light. It can also extend the life of your lamp and prevent premature deviation from the specification sheet

for calibrated light sources.

Note

You must also call wrapper.setStrobeEnable(true) or this function will have

no effect.

Function call:
wrapper.setAutoToggleStrobeLampEnable(spectrometerIndex,enableFlag)

Boxcar Width
Boxcar smoothing “smoothes” the spectrum pixel values (i.e., reduces noise) by averaging a range of

contiguous pixels together. Each pixel in the spectrum is averaged with n pixels on either side of it. A

new spectrum is generated containing these averaged pixel values.

Function call:
wrapper.setBoxcarWidth(spectrometerIndex,numberOfPixelsOnEitherSideOfCenter)

4: Acquisition Parameters

30 000-20000-400-12-201505

Correct for Detector Nonlinearity
All Ocean Optics spectrometers are calibrated at the factory to maximize accuracy. One of the

calibrations performed is to correct for detector nonlinearity.

This calibration consists of eight numbers used as the coefficients of a 7
th
 order polynomial that adjusts

for the fact that the CCD detectors don’t respond to stimuli photons uniformly as more and more electrons

are drained from the well. In other words, the efficiency of the CCD detectors may be 30% when the well

is half full, but may be only 20% when the well is completely drained of electrons.

By “efficiency” we mean the probability that an incoming photon will drain an electron from the CCD

well; 100% efficiency means every incoming photon will drain one electron, while 50% efficiency means

an incoming photon has only a 50% chance of causing an electron to drain.

Nonlinearity calibration is made by averaging together all pixels of the CCD array. Thus, we are

assuming that all pixels respond about the same.

Function call:
wrapper.setCorrectForDetectorNonlinearity(spectrometerIndex,enableFlag)

Correct for Electrical Dark
Many (not all) spectrometers have a number of dark pixels. A dark pixel is an actual electrically active

CCD detector pixel which has been physically coated to prevent any light from entering. Due to leakage,

a small amount of electrons escape from the well even if there is absolutely no light. Electric dark

correction computes an average value of these dark pixels over fifteen consecutive scans, and then

subtracts this average value from all pixels in the spectrum to eliminate error due to leakage. Although the

algorithm specifies that 15 consecutive scans be averaged together, the correction factor will be applied as

soon as the first spectrum of data becomes available. Then additional scans will be averaged into the

correction factor as these spectra become available. A running average of the most recent 15 scans is

maintained.

Since the amount of leakage is proportional to the duration of the integration time, whenever the

integration time is changed, the previous correction factor is discarded and we begin to compute a new

correction factor based entirely on the new integration time.

Function call:
wrapper.setCorrectForElectricalDark(spectrometerIndex,enableFlag)

Integration Time
Integration time is simply the length of time during which we allow light to pass into the spectrometer’s

detector. In low-light level situations you may want to lengthen this period to obtain a meaningful

spectrum. In high-light level situations you may want to shorten this period to avoid saturation. Saturation

occurs when the one or more CCD pixels or wells have been completely drained (or completely filled on

some detector models).When this occurs, additional photons entering the “well” have no effect, and the

spectrum becomes increasingly distorted. If you plot a saturated spectrum on a graph, it will appear

clipped at the peaks.

 4: Acquisition Parameters

000-20000-400-12-201505 31

Integration time is specified in units of microseconds. See the documentation for your spectrometer to

determine the allowable minimum and maximum integration times it will support.

Function call:
wrapper.setIntegrationTime(spectrometerIndex,integrationTimeInMicrosec

onds)

Scans to Average
Scans to average is another method used to perform noise-reduction (smoothing) on the spectra returned

by a spectrometer. With this technique, multiple sequential spectra are averaged together to produce a

single averaged spectrum. The algorithm uses corresponding pixels from each spectrum when computing

the average for a given pixel value. For example, if Scans to Average is set to 5, the pixel[0] values from

each of five consecutive scans are added together, and then divided by 5. The resulting value will be

reported in pixel[0] of the spectrum returned to the user. This procedure is repeated for each pixel in the

spectrum.

If you have specified a large number of scans to average, or you are using a relatively long integration

time, it may take a considerable length of time to compute the smoothed spectrum. If during this time

you decide to abort the operation, you do not need to wait for all of the contributory spectra to be

acquired. Calling wrapper.stopAveraging() causes wrapper.getSpectrum() to return

immediately (as soon as the current raw spectrum has been acquired). Of course, your application must be

multi-threaded to take advantage of this ability to abort averaging since the original call to

getSpectrum() will block the thread from which it was called.

Note

In the following function call, if you specify a value of 1 for the

numberOfScansToAverageTogether argument, no smoothing will be performed.

Each spectrum will be reported as is, without any averaging.

Function call:
wrapper.setScansToAverage(spectrometerIndex,numberOfScansToAverageTogether)

Strobe Enable
This parameter controls whether a light source is turned on or off. Ocean Optics offers a number of light

sources that can be controlled by your OmniDriver application. These light sources attach directly to an

electrical connector on your spectrometer. You can then call the setStrobeEnable() function to turn

the light source on and off.

4: Acquisition Parameters

32 000-20000-400-12-201505

Note

The lamp does not respond immediately when you call this function. Rather, the lamp

will change state when you call wrapper.getSpectrum() to request a new

spectrum. So if you call setStrobeEnable(), but fail to call getSpectrum(), the

lamp will never change state to match the state you requested.

Function call:
wrapper.setStrobeEnable(spectrometerIndex,enableFlag)

000-20000-400-12-201505 33

Chapter 5

Optional Features

Overview
A feature is defined as an optional capability offered by some spectrometers, but not available on all

spectrometers. All spectrometers support certain basic operations, such as setting the integration time and

acquiring a spectrum. But not all spectrometers support all features. See your spectrometer’s

documentation to determine which features it supports.

Another characteristic of a feature is that the methods or functions you must call to use it are not provided

directly in the Wrapper class. Instead, for each feature, Wrapper provides a pair of related methods you

can call to determine if a feature is supported by your spectrometer and to obtain a secondary object with

the methods needed to use or control that feature.

Thus, in the Wrapper object, you will see a number of methods whose names look something like

isFeatureSupportedXXX() where “XXX” is the name of the feature. These methods return a

true/false value to indicate whether that spectrometer supports that feature. It is very important to always

call the isFeatureSupportedXXX() method before attempting to use a feature. If you attempt to

use a feature that is not supported by your spectrometer, nothing will happen.

After calling the isFeatureSupportedXXX() method (and assuming it returns a “true” value), the

second step is to obtain a secondary object containing the methods unique to that feature. Again, in the

Wrapper object, you will see a number of methods whose names look something like

getFeatureControllerXXX() where XXX is the name of the feature. Each of these methods

returns a different object, unique to that feature. For example,

getFeatureControllerThermoElectric() returns the ThermoElectric object. The

ThermoElectric object has methods that allow you to set the desired detector temperature in your

spectrometer.

Caution

Never create instances of a feature-controller object directly. Such an object will not

be connected to a spectrometer and calling its methods will have no effect. Always

use the wrapper getFeatureControllerXXX() methods to obtain instances of

feature-controller objects.

The following sections describe all of the optional features, but be sure to see the documentation for your

spectrometer to determine if it supports that specific feature.

5: Optional Features

34 000-20000-400-12-201505

Analog In

For information about this feature, see the documentation for your spectrometer. Additionally, the

OmniDriver javadocs for the AnalogIn class provide details on how to use this feature.

Analog Out

For information about this feature, see the documentation for your spectrometer. Additionally, the

OmniDriver javadocs for the AnalogOut class provide details on how to use this feature.

Board Temperature

Some spectrometers contain a temperature sensor chip mounted on the printed circuit board (PCB). Your

application can read out this temperature value, in degrees Celsius, by means of this feature.

Do not confuse this feature with the Thermo Electric Cooling feature, described later in this chapter.

Java

BoardTemperature boardTemperature;

int spectrometerIndex;

double temperatureCelsius;

spectrometerIndex = 0; // set this to the index of your spectrometer

if (wrapper.isFeatureSupportedBoardTemperature(spectrometerIndex) == true)

 {

 // Board temperature feature is supported by this spectrometer

boardTemperature =

 wrapper.getFeatureControllerBoardTemperature(spectrometerIndex);

try {

 temperatureCelsius =

 boardTemperature.getBoardTemperatureCelsius();

 System.out.println("board temperature = " +

 temperatureCelsius);

} catch (IOException ioException) {

 System.out.println("Exception occurred);

 System.out.println(ioException);

` }

} else {

System.out.println("Board temperature feature is not supported by

 this spectrometer.");

}

Continuous Strobe

Continuous Strobe feature gives you the ability to generate a continuous square-wave with a 50% duty

cycle. This square wave is made available to an attached Ocean Optics light source, or to your own

custom hardware, via one of the pins on the spectrometer’s external connector. The signal is disabled until

the start of the integration period. When the integration period begins, the continuous-strobe signal is

enabled and you will see it on the appropriate connector pin of your spectrometer.

 5: Optional Features

000-20000-400-12-201505 35

The phase of the continuous-strobe signal is not synchronized with the start of the integration period. In

other words, when the integration period begins, the continuous strobe signal may be anywhere within its

cycle, and the voltage level on the output pin at that moment may be low or high.

To set the duration of the full period of the continuous-strobe signal, call
continuousStrobe.setContinuousStrobeDelay(int

durationOfPeriodInMicroseconds). The allowed range of values is 0 to 65535. Thus, if you

want the signal to be high for 10 milliseconds and then low for 10 milliseconds, you should specify the

value 20000 (20 milliseconds, converted to microseconds).

Note

You will not see a signal on the continuous-strobe pin until you have called

wrapper.setStrobeEnable(true). You may call

wrapper.setStrobeEnable(true) before or after setting the Continuous Strobe

Delay parameter; it makes no difference to the software. However, it is cleaner if you

leave the lamp turned off (wrapper.setStrobeEnable(false)) until you have

set the value of your Continuous Strobe Delay parameter.

Caution

▪ Not all spectrometers support the continuous strobe signal. Check your

spectrometer’s documentation to verify whether it is supported.

▪ Not all lamps support Continuous Strobe mode. Check your spectrometer’s

documentation to verify the availability of this feature.

▪ Some lamps, such as the Ocean Optics PX2 light source are strobe lamps.

With these lamps, the duty cycle will not be 50%. Rather, the duration of the

light pulse will be fairly instantaneous, defined by the characteristics of the

strobe lamp itself.

Visual Basic

Dim continuousStrobeFeature As OmniDriver.CCoContinuousStrobe

Dim period As Integer

Dim spectrometerIndex As Integer

spectrometerIndex = 0 ' arbitrarily choose the first spectrometer

' The following constant defines the period of one complete

' on/off cycle of the continuous-strobe signal

' The duty cycle is always 50% (ie. equal time on and off)

' Thus, if you set the period to 30 milliseconds (as in this example),

' the signal will be high for 15 milliseconds and low

' for 15 milliseconds

period = 30000 ' 30 milliseconds

If wrapper.isFeatureSupportedContinuousStrobe(spectrometerIndex) = True Then

 continuousStrobeFeature =

wrapper.getFeatureControllerContinuousStrobe(spectrometerIndex)

 ' Set the period of the continuous-strobe signal

5: Optional Features

36 000-20000-400-12-201505

 continuousStrobeFeature.setContinuousStrobeDelay(period) ' odd name!

Else

 MsgBox("continous-strobe not supported by this spectrometer")

 Return

End If

' Continuous-strobe signal will not be enabled until

' you turn the lamp on, so...

wrapper.setStrobeEnable(spectrometerIndex, 1)

' Lamp state doesn’t change until we ask for a spectrum, so...

wrapper.getSpectrum(spectrometerIndex)

External Trigger Delay

See your spectrometer’s documentation for information about this feature. Additionally, the OmniDriver

javadocs for the ExternalTriggerDelay class provide details on how to use External Trigger Delay.

GPIO (General Purpose I/O)

Using the GPIO feature, your software can exchange (send and receive) electrical signals with external

devices. GPIO provides up to 10 separate bits for this purpose. Each bit may be individually configured as

input or output. Response is immediate -- when you set the value of a GPIO output bit, the voltage

changes immediately.

In the software, bits are numbered 0 to 9. Different spectrometer models may have varying numbers of

GPIO bits available. See the documentation for your spectrometer.

The HR4 Breakout Box provides physical access to these GPIO bits. The J3 connector of this device has

10 pins which correspond to the 10 GPIO bits controlled by your software as shown below.

Rear Panel of HR4 Breakout Box

When facing the 10-pin J3 GPIO connector on the rear of the Breakout Box, bit numbering is as follows:

1 3 5 7 9

0 2 4 6 8

10-Pin J3 GPIO Connector Bit Numbering Diagram

 5: Optional Features

000-20000-400-12-201505 37

Note

Speed limitation: due to hardware limitations in the spectrometer, OmniDriver must

impose a 200 millisecond delay before returning from any of the GPIO function calls

(e.g., setDirectionBit(), setValueBit(), etc.).

Visual Basic – COM interface

Dim gpioBitSet As OmniDriver.CCoBitSet

Dim gpioController As OmniDriver.CCoGPIO

Dim spectrometerIndex As Integer

spectrometerIndex = 0

' Always verify that the feature is supported by your spectrometer

If wrapper.isFeatureSupportedGPIO(spectrometerIndex) = False Then

 MsgBox("The GPIO feature is not supported by this spectrometer.")

 Return

End If

' The following call to getFeatureControllerGPIO() will always return a '

"valid" object, even if the spectrometer does not support that

' feature.

' Hence it is important to first call isFeatureSupportedGPIO()

gpioController = wrapper.getFeatureControllerGPIO(spectrometerIndex)

' Set the mode: false is normal GPIO mode;

' true is "alternate function" mode

gpioController.setMuxBit(0, false)

gpioController.setMuxBit(1, false)

' Set the direction: true is output, false is input

gpioController.setDirectionBit(0, true) ’ set bit 0 to output

gpioController.setDirectionBit(1, false) ’ set bit 1 to input

’ Read all 10 GPIO bits into our buffer, even if some of them were

’ set to output (we will simply ignore those bits)

gpioBitSet = gpioController.getValueBits() ’ read all GPIO bits

MsgBox("GPIO bit 1 has the value " & gpioBitSet.get(1))

gpioController.setValueBit(0, true) ’ output: set GPIO bit 0 “high”

Visual Basic – “C” interface

Dim bitPosition As Long

Dim bitSetHandle As Long

Dim bitValue As Long

Dim gpioHandle As Long

Dim spectrometerIndex as Long

spectrometerIndex = 0

If Wrapper_isFeatureSupportedGPIO(wrapper, spectrometerIndex) = 1 Then

 gpioHandle = GPIO_Create()

 Wrapper_getFeatureControllerGPIO wrapper,spectrometerIndex,

gpioHandle

 bitPosition = 0

 GPIO_setMuxBit gpioHandle, bitPosition, 0 ' use this bit for

 ' general purpose I/O

5: Optional Features

38 000-20000-400-12-201505

 GPIO_setDirectionBit gpioHandle, bitPosition, 1 ' set direction to

 ' "output"

 GPIO_setValueBit gpioHandle, bitPosition, 1

 ' Demonstrate how to use the BitSet structure to read multible bits

 ' simultaneously

 GPIO_setMuxBit gpioHandle,0,0 ' use this bit for general purpose I/O

 GPIO_setMuxBit gpioHandle,1,0 ' use this bit for general purpose I/O

 GPIO_setMuxBit gpioHandle,2,0 ' use this bit for general purpose I/O

 GPIO_setMuxBit gpioHandle,3,0 ' use this bit for general purpose I/O

 GPIO_setMuxBit gpioHandle,4,0 ' use this bit for general purpose I/O

 GPIO_setMuxBit gpioHandle,5,0 ' use this bit for general purpose I/O

 GPIO_setMuxBit gpioHandle,6,0 ' use this bit for general purpose I/O

 GPIO_setMuxBit gpioHandle,7,0 ' use this bit for general purpose I/O

 GPIO_setMuxBit gpioHandle,8,0 ' use this bit for general purpose I/O

 GPIO_setMuxBit gpioHandle,9,0 ' use this bit for general purpose I/O

 GPIO_setDirectionBit gpioHandle, 0, 0 ' set direction to "input"

 GPIO_setDirectionBit gpioHandle, 1, 0 ' set direction to "input"

 GPIO_setDirectionBit gpioHandle, 2, 0 ' set direction to "input"

 GPIO_setDirectionBit gpioHandle, 3, 0 ' set direction to "input"

 GPIO_setDirectionBit gpioHandle, 4, 0 ' set direction to "input"

 GPIO_setDirectionBit gpioHandle, 5, 0 ' set direction to "input"

 GPIO_setDirectionBit gpioHandle, 6, 0 ' set direction to "input"

 GPIO_setDirectionBit gpioHandle, 7, 0 ' set direction to "input"

 GPIO_setDirectionBit gpioHandle, 8, 0 ' set direction to "input"

 GPIO_setDirectionBit gpioHandle, 9, 0 ' set direction to "input"

 bitSetHandle = BitSet_Create()

 listboxMessages.AddItem ("About to read GPIO bits")

 listboxMessages.Refresh

 GPIO_getValueBits gpioHandle, bitSetHandle ' read all 10 bits

 bitValue = BitSet_get(bitSetHandle, 0)

 listboxMessages.AddItem ("GPIO bit 0 = " & bitValue)

 bitValue = BitSet_get(bitSetHandle, 1)

 listboxMessages.AddItem ("GPIO bit 1 = " & bitValue)

 listboxMessages.Refresh

 BitSet_Destroy bitSetHandle ' don't forget to do this!

 GPIO_Destroy gpioHandle

End If

I2C Bus Communications Feature

Call wrapper.isFeatureSupportedI2CBus(spectrometerIndex) to determine if your

spectrometer supports this feature.

Call wrapper.getFeatureControllerI2CBus(spectrometerIndex) to obtain a controller object

for this feature.

 if (wrapper.isFeatureSupportedI2CBus(spectrometerIndex) == true)
 {
 byte[] buffer = new byte[16];
 byte[] readBuffer = new byte[128];
 int length;

 System.out.println("I2CBus feature is supported");

 5: Optional Features

000-20000-400-12-201505 39

 I2CBus i2cbus = wrapper.getFeatureControllerI2CBus(spectrometerIndex);
 try {
 buffer[0] = 0x00; // eeprom memory address MSB
 buffer[1] = 0x00; // eeprom memory address LSB
 buffer[2] = 0x05; // value to write into eeprom at that address
 buffer[3] = 127; // value to write into eeprom address+1
 buffer[4] = 0x70; // value to write into eeprom address+2
 buffer[5] = (byte)128; // value to write into eeprom address+3
 wrapper.getWrapperExtensions().setI2CBytes(i2cbus,(byte)0x53,(byte)6,buffer); //
i2cBus_object, i2c_address, byteCount, payload

 buffer[0] = 0x00; // eeprom memory address MSB
 buffer[1] = 0x00; // eeprom memory address LSB
 // In the following statement, 0x53 is the address of the second EEPROM in the USB2000+
spectrometer
 // CAUTION: do NOT use this code to write into your spectrometer's EEPROM - you will
overwrite important data!
 wrapper.getWrapperExtensions().setI2CBytes(i2cbus,(byte)0x53,(byte)2,buffer); // i2c, address,
byteCount, buffer

 length = 4;
 readBuffer = wrapper.getWrapperExtensions().getI2CBytes(i2cbus,(byte)0x53,(byte)length); //
i2c, address, byteCount
 for (int index=0; index<length; ++index)
 System.out.println(readBuffer[index]);

 } catch (IOException exception) {
 System.out.println("I2C problem: " + exception);
 }
 } else {
 System.out.println("I2CBus feature is not supported");
 }

To send bytes:

Call wrapper.getWrapperExtensions().setI2CBytes(i2cbus, address, numberOfBytes,

outputBuffer)This method will return a “1” if the operation was successful. It will return a “0” if the

operation failed.

Call wrapper.getLastException() to determine the nature of the error.

To receive bytes

Call wrapper.getWrapperExtensions().getI2CBytes(i2cbus, address, numberOfBytes)

If an error occurred, this method returns a single-element array with that element’s value set to “-1”. If

successful, this method returns an array containing the bytes received from the device.

Note

It is possible to send and receive bytes by calling the setI2Cbytes() and

getI2Cbytes() methods directly on the I2CBus controller object. However, this is

NOT recommended because any I/O error will result in an application crash.

5: Optional Features

40 000-20000-400-12-201505

Irradiance Calibration Factor

See your spectrometer’s documentation for information about this feature. Additionally, the OmniDriver

javadocs for the IrradianceCalibrationFactor class provide details on how to use this feature.

Nonlinearity Correction

See your spectrometer’s documentation for information about this feature. Additionally, the OmniDriver

javadocs for the NonlinearityCorrectionProvider class provide details on how to use this feature.

SPI Bus

See your spectrometer’s documentation for information about this feature. Additionally, the OmniDriver

javadocs for the SPIBus class provide details on how to use this feature.

if (wrapper.isFeatureSupportedSPIBus(spectrometerIndex) == true)
 {
 int length;
 byte[] buffer = new byte[16];
 byte[] readBuffer;

 System.out.println("SPIBus feature is supported");

 SPIBus spibus = wrapper.getFeatureControllerSPIBus(spectrometerIndex);
 length = 7;
 buffer[0] = 17; // 0x11
 buffer[1] = 17; // 0x11
 buffer[2] = 34; // 0x22
 buffer[3] = 34; // 0x22
 buffer[4] = (byte)127;
 buffer[5] = (byte)128;
 buffer[6] = (byte)0x80;
 try {
 readBuffer = spibus.getSPIBytes(buffer, length);
 for (int index=0; index<readBuffer.length; ++index) {
 System.out.print("byte[" + index + "] = " + readBuffer[index] + " ");
 }
 System.out.println();
 } catch (IOException exception) {
 System.out.println("SPI problem: " + exception);
 }
 } else {
 System.out.println("SPIBus feature is not supported");
 }

Single Strobe
The Single Strobe feature allows you to pulse a lamp for a specified duration at a fixed offset from the

start of the integration period. This pulse will be repeated once for each integration period. The Single

Strobe mode is enabled by setting the delay time and pulse duration parameters and then calling

wrapper.setStrobeEnable(true).

 5: Optional Features

000-20000-400-12-201505 41

The Single Strobe feature transmits an electrical signal on one of the output pins of the spectrometer.

Your lamp plugs into this connector on the spectrometer and is controlled by the state of the Single Strobe

pin. See your spectrometer documentation to determine which pin carries the Single Strobe signal.

Four separate connector pins relate to lamp control. These signals are as follows:

1. Strobe Enable signal (typically pin 4*)

2. Single Strobe signal (typically pin 8*)

3. Continuous Strobe signal (typically pin 5*)

4. Ground (typically pin 6*)

* Check your spectrometer’s documentation to verify the pin numbers.

To set the length of delay from the start of the integration period before turning the lamp on, call

singleStrobe.setSingleStrobeHigh(int highDelay), passing in a value of

microseconds, in the range 0 to 65535.

To specify when the lamp should be turned off, call singleStrobe.singleStrobeLow(int

LowDelay). The value you specify here is the number of microseconds (0 to 65535), relative to the start

of the integration period, when you want the lamp to be turned off again. The actual duration of the light

pulse will be (lowDelay – highDelay), so the lowDelay value should be larger than the

highDelay value. To send no pulse at all out the single-strobe signal pin, set the lowDelay value

equal to the highDelay value.

Note

You will not see any signals/pulses on the single-strobe pin until you have called

wrapper.setStrobeEnable(true). You can call

wrapper.setStrobeEnable(true)before or after setting the single-strobe

delay/duration parameters; it makes no difference to the software. However, it is cleaner

if you leave the lamp turned off (wrapper.setStrobeEnable(false)) until you

have set up your single-strobe delay/duration parameters.

Caution

▪ Not all spectrometers support the Single Strobe mode of operation. Check

your spectrometer’s documentation to verify that it supports Single Strobe

mode.

▪ Not all lamps support Single Strobe mode. Check your lamp’s documentation

to verify the availability of this feature.

▪ Even if both the spectrometer and the lamp support Single Strobe operation,

the lamp may not support setting the duration of the pulse. Strobe lamps such

as the PX2 simply provide a strobe flash, regardless of the duration you

specify. With these lamps, you can only control the delay until the flash

occurs, not the duration of the flash.

5: Optional Features

42 000-20000-400-12-201505

For further information, see Continuous Strobe.

Visual Basic

Dim singleStrobeFeature As OmniDriver.CCoSingleStrobe

Dim delayUntilStrobeOff As Integer

Dim delayUntilStrobeOn As Integer

Dim spectrometerIndex As Integer

spectrometerIndex = 0 ' arbitrarily choose the first spectrometer

' The following two constants will establish a pulse duration of

' 20 milliseconds (delayUntilStrobeOff - delayUntilStrobeOn)

delayUntilStrobeOn = 30000 ' 30 milliseconds

delayUntilStrobeOff = 50000 ' 50 milliseconds

If wrapper.isFeatureSupportedSingleStrobe(spectrometerIndex) = True Then

 singleStrobeFeature =

wrapper.getFeatureControllerSingleStrobe(spectrometerIndex)

 ' Set the number of microseconds to delay after the

 ' start of the integration period before we turn the lamp on

 singleStrobeFeature.setSingleStrobeHigh(delayUntilStrobeOn)

 ' Set the number of microseconds to delay after the

 ' start of the integration period before we turn the lamp off

 singleStrobeFeature.setSingleStrobeLow(delayUntilStrobeOff)

Else

 MsgBox("single strobe feature not supported by this spectrometer")

 Return

End If

' Single-strobe signal will not be enabled until

' you turn the lamp on, so...

wrapper.setStrobeEnable(spectrometerIndex, 1)

' Lamp state doesn’t change until we ask for a spectrum, so...

wrapper.getSpectrum(spectrometerIndex)

Stray Light Correction

For information about this feature, see the documentation for your spectrometer. Additionally, the

OmniDriver javadocs for the StrayLightCorrection class provide details on how to use this

feature.

Thermo Electric Cooling

Some spectrometers such as the QE65000 have a thermo electric cooled (TEC) CCD that can be

controlled by the software.

Be careful to observe the allowable temperature range supported by your spectrometer’s TE cooler. For

example, the TE cooler of the QE65000 is capable of dropping the temperature of the CCD by 30-43

degrees Celsius below the ambient temperature. Thus, if the ambient temperature happens to be 25

degrees Celsius, the range of values you may pass in to the setDetectorSetPointCelsius() method will be -

5 to -18 degrees Celsius. In this example, if you (erroneously) attempt to specify a value of -3 degrees

Celsius, the TE cooler will not function properly and the temperature of the CCD will not approach -3

degrees Celsius.

 5: Optional Features

000-20000-400-12-201505 43

Caution

You may see erroneous temperature values returned at random intervals by the

getDetectorTemperatureCelsius() method. Typically, you will see just one

bad value, and then the next call to this method returns the correct value.

Visual Basic – COM interface

Dim actualTemperature As Double

Dim desiredTemperature As Double

Dim tecController As OmniDriver.CCoThermoElectric

Dim spectrometerIndex As Integer

spectrometerIndex = 0 ' arbitrarily select the first spectrometer

' Attempt to obtain a "CCoThermoElectric" object that will allow us to

' interact with the thermo-electric controls for this spectrometer.

If wrapper.isFeatureSupportedThermoElectric(spectrometerIndex) = False Then

 MsgBox("The thermo-electric feature is not supported.")

 Return

End If

' The following call to getFeatureControllerThermoElectric() will

' always return a "valid" object,

' even if the spectrometer does not support that feature.

' Hence it is important to first call sFeatureSupportedThermoElectric()

tecController =

 wrapper.getFeatureControllerThermoElectric(spectrometerIndex)

actualTemperature = tecController.getDetectorTemperatureCelsius()

' If you want to control the temperature, setTECEnable()

' MUST be set to true

tecController.setTECEnable(True)

tecController.setFanEnable(True) ' turn the fan on (optional)

desiredTemperature = -12.3 ' degrees Celsius

tecController.setDetectorSetPointCelsius(desiredTemperature)

Version

See the OmniDriver javadocs for the Version class for details about this feature.

5: Optional Features

44 000-20000-400-12-201505

000-20000-400-12-201505 45

Chapter 6

External Trigger Modes

Overview
The trigger mode setting of your spectrometer gives you more precise control over the timing of a

spectrum capture.

Not all spectrometers support all trigger modes, so be sure to see the documentation for your particular

spectrometer. You set the trigger mode of your spectrometer by calling

wrapper.setExternalTriggerMode(), specifying an integer that corresponds to the desired

mode.

Mode 0: Normal Mode
Sometimes called “free running” mode, this is the default mode for all spectrometers. In this mode, the

spectrometer is continuously acquiring new spectra, using default power-up settings for integration time,

etc.

The integration time is controlled by calls to the wrapper.setIntegrationTime() method.

When you call the getSpectrum() method, it returns the next available spectrum, subject to delay due

to the length of integration time, number of scans to average, and possibly a stability scan. It is also

possible that getSpectum() returns almost immediately, even if you specified a lengthy integration

period, because the spectrometer is continuously acquiring spectra. See Appendix A: FAQs for more

information.

The getSpectrum() method will block (i.e., not return) until the spectrometer finishes acquiring the

current spectrum.

Mode 1: External Software Trigger Mode
In this mode, the trigger signal acts like an “enable”. As long as the input trigger signal pin on your

spectrometer is held electrically high, spectra will be continuously acquired. When the signal goes low,

the spectrometer no longer acquires spectra, and getSpectrum() will remain blocked (i.e., not return)

until the signal goes high again.

This mode is similar to Mode 0 (Normal mode) in that as long as the trigger signal remains high, the

spectrometer is continuously acquiring new spectra, irrespective of when you call getSpectrum(). In

this situation, getSpectrum() simply returns the next available spectrum.

The integration time is controlled by calls to the wrapper.setIntegrationTime() method.

6: External Trigger Modes

46 000-20000-400-12-201505

Mode 2: External Synchronization Trigger Mode
In this mode, spectra acquisition is initiated by an external synchronizing TTL trigger signal. The

purpose of this mode is to allow multiple spectrometers to be synchronized in terms of the start of their

acquisition period, and the duration of the integration period. The integration time is determined based on

an average of the length of time between the input trigger signal pulses. See your spectrometer’s

documentation for the allowed frequency range for this input signal.

Mode 3: Hardware Trigger Mode
In this mode, the spectrometer does not begin to acquire a new spectrum until the rising edge of an

external TTL input signal. When you call getSpectrum(), this method blocks (i.e., does not return to

the caller) until the trigger signal occurs and the spectrum has been acquired.

The integration time is controlled by calling the wrapper.setIntegrationTime() method.

Unique behavior of the QE65000: the CCD detector on the QE65000 does not support Stand-by

mode. It must be running at all times. Therefore, the QE65000 simply sets its integration time to the

minimum possible value (8 milliseconds) and waits for the trigger signal. When the signal occurs, it waits

for the current acquisition to complete (can take up to 8 milliseconds), sets the integration time to the

value specified by the user, and then acquires a new spectrum.

Note

Once you put the spectrometer in this mode, it is impossible to programmatically return

to normal Hardware Trigger mode. You must power-cycle the spectrometer by

unplugging it from your computer.

Mode 4: Single-Shot Trigger Mode (Quasi
Realtime Mode)
This mode is designed to provide more precise software control over when a spectrum acquisition is

initiated. This is especially valuable when you need to use very long integration periods, but also want

precise control over when the acquisition period begins.

This mode is only available on certain spectrometers, including the QE65000, NIR256, and NIR512

spectrometers.

In this mode, the spectrometer automatically sets its integration time to a very short integration period and

then begins to continuously acquire spectra using this minimal integration time. When

setIntegrationTime() is called to specify the desired integration period, this value is stored in the

spectrometer, but the spectrometer continues to acquire spectra using the minimal integration period.

When getSpectrum() is called, the spectrometer completes the current acquisition (which should

happen very quickly since the integration time is so short). The spectrometer then sets its integration time

to the value requested and initiates a new spectrum acquisition. When this acquisition completes,

getSpectrum() returns the new spectrum. The spectrometer once again reverts to the minimal

integration period and continues to acquire spectra in the background.

000-20000-400-12-201505 47

Chapter 7

High-Speed Data Acquisition

Overview
For applications that must acquire spectra as rapidly as possible, OmniDriver offers a High-speed Data

Acquisition mode of operation. This mode is available for all Ocean Optics spectrometers. OmniDriver

achieves this improved performance by pre-allocating buffer space for a fixed number of spectra. Speed

is also improved since all spectra are acquired by a single call to a start-acquisition method, rather than

using separate function calls for each spectrum. This avoids the overhead of having to pass down through

several layers of software for each spectrum. It also avoids speed limitations imposed by the language in

which you develop your application (e.g., LabVIEW, Visual Basic, etc.).

High-speed data acquisition mode requirements include the following:

 You must specify in advance the number of spectra to be acquired. A single call into the high-

speed API will automatically acquire this number of spectra. Note that you are free to repeat the

call to the high-speed acquisition API multiple times, each time acquiring a fresh set of spectra.

 Since buffers must be pre-allocated, the amount of memory allocated to the Java virtual machine

limits you to about 3000 spectra.

 High speed data acquisition mode may be used for only one spectrometer at a time.

All methods comprising the high-speed data acquisition API belong to the wrapper object. These

methods all begin with the prefix highSpdAcq.

Function Call Sequence
The sequence of function calls you must make to use High-speed Data Acquisition mode is as

follows.

1. highSpdAcq_AllocateBuffer()

2. highSpdAcq_StartAcquisition()

This method normally will not return until the requested number of spectra have been acquired.

It may return before all requested spectra have been acquired if you call

highSpdAcq_StopAcquisition() from another thread in your application.

3. highSpdAcq_GetNumberOfSpectraAcquired()

Always call this method once acquisition has completed, just in case the number of spectra is less

than expected.

4. Loop once for each spectrum acquired, calling the following methods.

a. highSpdAcq_GetSpectrum(spectrumNumber)

7: High-Speed Data Acquisition

48 000-20000-400-12-201505

b. highSpdAcq_GetTimeStamp(spectrumNumber)
This method is optional and should only be called if you require an exact time stamp

indicating when each individual spectrum was acquired. This time stamp is an instance

of the HighResTimeStamp object, defined in OmniDriver.

c. highSpdAcq_IsSaturated(spectrumNumber)
It is always a good idea to call this method on behalf of each acquired spectrum, to ensure

that saturation did not occur.

One additional method that may be useful is highSpdAcq_StopAcquisition(). You normally do

not need to call this method since acquisition of spectra automatically stops when the required number of

spectra has been acquired. However, if you detect a condition which obviates the need for acquiring all of

the requested spectra, you may call this method. This method must be called from a different thread in

your application since the highSpdAcq_StartAcquisition() method blocks until it has acquired all

requested spectra.

For further details about each of the high-speed data acquisition API methods, refer to Chapter 11:

Wrapper API Reference.

You may also want to take a look at the HighSpeedAcquisitionSample, written in Java, to see

high-speed data acquisition in action.

Notes

If your application runs out of memory, see Appendix D: Controlling Memory Size.

For ideas on how to improve the performance of your application, see Appendix E:

Improving OmniDriver Performance on Windows.

000-20000-400-12-201505 49

Chapter 8

Using OmniDriver with
Multithreaded Applications

Overview
OmniDriver supports multi-threaded applications. Using multiple threads, your application can acquire

and control spectra from multiple spectrometers, all running concurrently, without interfering with each

other.

You can only run one OmniDriver application at a time on your PC. When your application calls

wrapper.openAllSpectrometers(), OmniDriver attempts to identify all attached spectrometers.

OmniDriver then assumes it has exclusive access to each of the spectrometers it discovers. If you were to

run a second OmniDriver application on the same PC, both applications would assume they had exclusive

control of the same spectrometer, and they would interfere with each other.

Notes

The C, C++, and .NET assembly interfaces all support true multithreading/concurrency.

Avoid the deprecated COM interface because it does not support multithreading.

If your application runs out of memory, see Appendix D: Controlling Memory Size.

Multithreading General Guidelines

Observe the following guidelines when performing multithreading in an OmniDriver application:

 There should only be ONE instance of the Wrapper object. Usually you will instantiate/create this

object in your application's main thread.

 The wrapper.openAllSpectrometers() function should only be called once, probably

in your main thread.

 When you create a new thread, you will want to pass in a reference to the one-and-only Wrapper

object. In C++ or Java, you could pass this reference in via the constructor for your new thread.

 Each spectrometer should be accessed from only one thread. Never try to invoke Wrapper

methods for the same spectrometer in two different threads. Results are unpredictable and the

application will probably crash, or give incorrect results without reporting an error. You can

access more than one spectrometer from a single thread, but these particular spectrometers must

always, and only, be accessed from that thread.

8: Using OmniDriver with Multithreaded Applications

50 000-20000-400-12-201505

 Be aware that Windows, Linux and Mac OSX are not real-time operating systems (and Java

further complicates the issue). You can’t predict how Windows/Java will allocate CPU cycles to

any given thread. You are, however, free to alter thread priority using whatever function calls

your language provides you. You are also free to invoke sleep() and yield() methods in your

threads. (These may not be the exact names of these methods for your IDE/language.)

 The wrapper.getSpectrum() method blocks (i.e., does not return) until a new spectrum is

available. When you call wrapper.getSpectrum() in one thread, it only blocks that thread.

It does not impact any other thread.

 In general, if a wrapper method does not take a spectrometerIndex parameter, you should

call that method only from the main thread of your application. If a wrapper method does take a

spectrometerIndex parameter, you should only call that method from the thread that

“owns” that spectrometer.

Exceptions to General Guidelines

The following are exceptions to the guidelines listed above. These actions are permitted, but not

recommended due to their complexity and risk of confusion.

 Actually it is perfectly safe to access the same spectrometer from multiple threads if you can

guarantee that the threads will not attempt to call functions that access the same

spectrometer at the same time. It is much safer and easier to manage your application if you

restrict a given spectrometer to a single thread, but we do not enforce any restriction on accessing

the same spectrometer from different threads. A problem will arise only if you attempt to call

functions that access the same spectrometer at the same time from two different threads. If you

are certain that your threads are coordinated in such a way that this will never happen, then you

should have no problem.

 You may access all of your spectrometers from the main thread prior to creating any background

threads. Again, the only absolutely incontrovertible restriction is that you must not attempt to call

functions that access a given spectrometer from two different threads at the same time.

ADC1000-USB A/D Converter Notes
The ADC1000-USB A/D Converter supports multiple channels. You might think that each channel can be

controlled via a separate thread. However, due to the design of the ADC1000-USB hardware, all of its

channels must be accessed from the same thread. The channels of the ADC1000-USB do not operate like

independent spectrometers.

LabVIEW Notes
The LabVIEW call library functions that call functions in OmniDriver32.dll must be made to be multi-

threading. To do this, perform the following procedure.

► Procedure

1. Double click on the Call Library function on the back panel.

 8: Using OmniDriver with Multithreaded Applications

000-20000-400-12-201505 51

 For LabView 8.5, select the Function tab and find the top right section called Thread. There are

two options: run in UI thread and run in any thread. Select run in any thread.

 Earlier versions of LabVIEW have a drop-down box near the upper right corner with the options

Run in UI thread and Reentrant. Select Reentrant.

This must be done for all call library functions in the VI.

2. Make that sub-VI reentrant. To do this:

a. From the File menu option, select VI properties. There is a Category drop down box.

b. Select execution.

c. Locate the Reentrant check box (on the left, about midway down). Check this box.

d. Locate the Allow debugging check box. This needs to be unchecked.

The sub VI should now be fully multithreading.

Samples

We provide samples, written in Java and C# (C-Sharp) and Visual Basic (2005), that illustrate how to do

multi-threading with OmniDriver:

 Java: Sample is located in the ..\samples\java\ ConcurrentAcquisitionThreads directory.

 C#: Sample is located in the ..\samples\win32\csharp\ ConcurrentAcquisitionThreads directory.

 Visual Basic: Sample is located in ..\samples\win32\visualbasic\ vs2005_com_MultiThreading.

8: Using OmniDriver with Multithreaded Applications

52 000-20000-400-12-201505

000-20000-400-12-201505 53

Chapter 9

Developing Your OmniDriver
Application

Overview
The following sections provide information on setting up the development environment for your specific

programming language to develop OmniDriver applications.

Note

The source code and the project files for all sample applications are available in a

separate downloadable installer located on the Ocean Optics website: Windows

OmniDriver and SPAM Sample Pack.

NetBeans Setup on Linux
If you are using the NetBeans IDE on Linux, use the following guidelines for setting up your

environment.

2. Install the latest version of OmniDriver on your Linux system. Be sure to choose the correct

architecture (i.e., 32-bit or 64-bit). For this example, assume your system is 64-bit architecture,

so the installer would be similar to the folowing:

OmniDriver-2.12-linux64-development-installer.bin

This procedure assumes you install OmniDriver into your home directory.

3. In NetBeans, open the sample project located in

~/OceanOptics/OmniDriver-2.12/samples/java/SpectrometerTest

4. You may need to resolved references in NetBeans. To do this:

a. In the project window, right-click on the SpectrometerTest project and choose Resolve

Reference Problems…

b. Highlight the problem JAR file in the list and click Resolve.

c. Navigate to ~/OceanOptics/OmniDriver-2.12/OOI_HOME and highlight the missing

JAR file. Then click OK.

https://sourceforge.net/projects/oceanoptics-samplepack/
https://sourceforge.net/projects/oceanoptics-samplepack/

9: Developing Your OmniDriver Application

54 000-20000-400-12-201505

5. You may need to add OmniDriver.jar to the list of “Compile-time Libraries” used by this project.

To do this:

a. Right-click on the SpectrometerTest project and choose Properties.

b. Click on Libraries in the Categories list.

c. Click on the Compile tab.

d. Click the Add Jar/Folder button.

e. Navigate to the OOI_HOME folder, highlight OmniDriver.jar, and then click OK.

6. Build your app.

7. Try running your app.

8. If you get the error “Failed to load any native library for USB…”, do the following:

a. Right-click on the project and choose Properties.

b. Click on Run in the list of categories.

c. In the VM Options field, enter something like:

-Djava.library.path=/home/steve/OmniDriver-2.12/OOI_HOME (or where you installed

OmniDriver)

9. Rebuild and run the sample application to verify your environment has been set up correctly.

Developing in C/C++ (all IDEs)

Required Header Files

If you are developing in C or C++, you will need several header files.

You must update your IDE's project settings by adding the following directories to the list of include

directories:

 $(OMNIDRIVER_HOME)\include

 $(JAVA_HOME)\include

 $(JAVA_HOME)\include\win32

OMNIDRIVER_HOME refers to the location where OmniDriver was installed.

JAVA_HOME refers to the location where the Java JDK was installed.

Adding Project Directories in Microsoft Visual Studio 2005

► Procedure

To add project directories in Microsoft Visual Studio 2005,

1. Open the project Properties window.

2. Expand the C/C++ branch, and click General.

3. Add each of the directories listed above to the Additional Include Directories property.

 9: Developing Your OmniDriver Application

000-20000-400-12-201505 55

Required Library Files

You must also update your IDE's project settings for it to locate the OmniDriver32.lib, common32.lib,

and (optionally) SPAM32.lib files.

► Procedure

1. In Microsoft Visual Studio 2005, open the project Properties window, expand the Linker branch,

and click on General.

2. Add the full path to the OOI_HOME directory to the list of directories for the Additional

Library Directories property.

3. Click on the Input item for linker settings and add OmniDriver32.lib, common32.lib, and

(optionally) SPAM32.lib to the Additional Dependencies property.

Java Requirement

As implied above, you must download and install the Java JDK. The JDK version of Java is necessary

because the smaller JRE version does not have the necessary include files. Any version of Java 1.6 or

later is acceptable.

Download the Java JDK from www.javasoft.com .

Specify Your OS Platform

It may be necessary to add one of the following #define lines to your source files:

 #define WIN32 (use this for Windows 64-bit also)

 #define MACOSX

 #define LINUX

Choose the symbol that corresponds to the operating system you are using. This #define should be placed

BEFORE any include statements for OmniDriver header files. Some IDE's and project types

automatically define the appropriate symbol. But some types of Visual Studio projects do not

automatically define the required symbol. If none of these symbols is defined, you will get numerous

compile-time errors relating to OmniDriver symbols.

Interface Choices

OmniDriver functionality is exposed via three different interfaces:

 C functions

 C++ classes

 COM objects deprecated

 .NET assemblies

http://www.javasoft.com/

9: Developing Your OmniDriver Application

56 000-20000-400-12-201505

If you are developing with Microsoft Visual Studio, you may use any of these interface methods.

However, if you are developing with any other IDE (e.g., Borland C++ Builder), you may only use the C

and COM interfaces. This is because there is no standard for how C++ name mangling is performed, and

the OmniDriver C++ interface was developed using Microsoft Visual Studio. Using the C++ interface

with an IDE other than Visual Studio results in many "undefined symbol" errors.

Developing with Borland C++ Builder
When using the Borland IDE, you must use the C interface to OmniDriver due to incompatibilities in how

Borland performs C++ name mangling vs. Microsoft Visual Studio. You also have the option of using the

OmniDriver COM object interface, but that is outside the scope of this document.

Setting Up the Environment

The format of the library (*.lib) files provided by OmniDriver is incompatible with the Borland C++

Builder IDE. To overcome this, you must manually generate your own *.lib files based on the

OmniDriver DLL files.

Note

Be careful not to over-write the existing *.lib files in the OOI_HOME directory in case

you need the Microsoft form of these files in the future.

► Procedure

1. Open a DOS window

2. cd into the OOI_HOME directory

(c:\program files\ocean optics\OmniDriverSPAM\OOI_HOME)

3. Use the Borland implib.exe tool to generate new library files. This tool may be located in

c:\program files\borland\bds\4.0\bin.

In the following commands, be careful to specify an output lib filename that will not overwrite

the existing *.lib files already located in the OOI_HOME directory. In the example commands

below for 32-bit systems, “_borland” was appended to the names of the output files to ensure they

will not over-write other library files (for 64-bit, replace “32” with “64”):

a. implib common32_borland.lib common32.dll
b. implib OmniDriver32_borland.lib OmniDriver32.dll
c. implib SPAM32_borland.lib SPAM32.dll

4. Edit the file platform.h in the OmniDriver include subdirectory.

5. Find the #ifdef __BORLANDC__ statement.

The following line should look like

#define EXPORTED __declspec(dllexport) __stdcall

6. Delete the __stdall keyword from this line and save the file back to disk.

 9: Developing Your OmniDriver Application

000-20000-400-12-201505 57

Creating a New Project
► Procedure

1. Start Borland C++ Builder using File | New | Other.

2. Highlight C++ Builder Projects in the left pane.

3. Highlight VCL Forms Application in the right pane.

4. Click OK.

Note

For convenience, you can make the Properties pane visible by clicking

View.ObjectInspector. This is handy for setting the text labels and control names for

various GUI components.

5. Inform Borland of the location of the required header files as follows:

Select Project | Options.

Expand the C++ Compiler node.

Highlight Paths and Defines.

Click the Edit button on the Include search path line to add the following pathnames (these paths

may be slightly different on your system):

c:\program files\ocean optics\OmniDriver\include

6. Inform Borland of the location of the dll/library files as follows:

a. Select Project | Options.

b. Expand the C++ Compiler node.

c. Highlight Paths and Defines.

d. Add c:\program files\ocean optics\OmniDriver\OOI_HOME

7. Tell Borland which OmniDriver library files (*.lib) to link with as follows:

Select Project | Add To Project..

Set Files of type to Library file (*.lib).

Navigate to the OOI_HOME directory and add the following files:

common32_borland.lib

OmniDriver32_borland.lib

SPAM32_borland.lib

9: Developing Your OmniDriver Application

58 000-20000-400-12-201505

Caution

For each “C” callable function in OmniDriver, we provide support for two different

calling conventions. Borland requires the stdcall alternative. Therefore, you must append

_stdcall to every OmniDriver function call in your application. This ensures that your

application links to and calls the correct form of the function.

Troubleshooting

If you forget to edit the platform.h file, or if you reinstall OmniDriver (thus over-writing

your edits) you will see error messages like E2138 Conflicting type modifiers.

If you forget to append _stdcall to one of your OmniDriver function calls, you will get

Error: Unresolved external error messages. The solution is to edit your source file to

append _stdcall to each OmniDriver function call.

You may see warning messages like W8017 Redefinition of _ASSERTE is not identical.

These warnings are not a problem and may safely be ignored.

Developing in C with the National Instruments
CVI C Compiler
Use the following procedure to set up for new projects with OmniDriver.

► Procedure

Caution

STEP 1 IS IMPORTANT. If you fail to do this, you will get Missing Prototypes

error messages when you attempt to compile applications using OmniDriver.

1. Within the CVI IDE, you must make the following changes:

a. Select Build Options from the Options menu.
b. Uncheck Require function prototypes.

2. Add the following header file directories to your CVI project:

▪ $(OMNIDRIVER_HOME)\include

▪ $(JAVA_HOME)\include

▪ $(JAVA_HOME)\include\win32

To do this:

a. Click on the Edit.Project menu item

b. Click the Include Paths button.

 9: Developing Your OmniDriver Application

000-20000-400-12-201505 59

c. Add each of the required include directories.

3. Add the following library files to your CVI project:

▪ common32.lib

▪ OmniDriver32.lib

▪ SPAM32.lib (optional)

 These library files are located in the OmniDriver\OOI_HOME directory.

To do this:

a. Click on the Edit.Project menu item.

b. Remove the three LIB files listed above in this step from the list if they are present.

(highlight each file and click Remove).

c. Click Add to re-add each of these three LIB (not DLL) files.

Developing with Microsoft Visual C++ 6.0

Specifying the Location of the Java Header Files

You must specify where to find the Java header files.

► Procedure

To set the path where the IDE will look for the Java header files:

1. Click on the Project.Settings menu item.

2. Select All Configurations from the Settings For drop down list box.

3. Click on the Source Files in the pane on the left side.

4. Click on the C++ tab in the pane on the right side.

5. Choose Preprocessor from the Category drop down list box.

6. There are two paths that reference Java . Modify both Java paths to correspond to the location

where Java has been installed on your system.

Specifying the Location of the OmniDriver32.dll

You must specify where to find the OmniDriver32.dll.

► Procedure

To set the path where the IDE will look for the OmniDriver32.dll:

1. Click on the Project.Settings menu item.

2. Select All Configurations from the Settings For drop down list box.

3. Click on the Link tab.

4. Choose Input from the Category drop down list box.

9: Developing Your OmniDriver Application

60 000-20000-400-12-201505

5. Enter C:\Program Files\OceanOptics\OmniDriver\OOI_HOME in the Additional library path

textbox.

Handling the "long long" Data Type Issue

This compiler does not support the newer "long long" language construct for declaring 64-bit integers. To

work around this problem, add the following two statements to the top of every *.cpp file in your project

(ahead of any other #includes of OceanOptics header files):

 #define HIGHRESTIMESTAMP_H

 #define SPECTROMETERCHANNEL_H

Adding these two statements will prevent the inclusion of header files containing the "long long" data

type. The excluded header files are not necessary if you are using the Wrapper API to control your

spectrometers.

Developing in C#
PREFERRED: To use the .NET assembly interface to OmniDriver in your C# application, you must add a

reference to the assembly as follows:

► Procedure

1. In your application, click on the Project menu item, and then choose Add Reference.

2. Click on the Browse tab.

3. Navigate to the OOI_HOME directory.

4. Highlight NETOmniDriver.dll and/or NETSpam.dll and click OK.

Note

The ConcurrentAcquisitionThreads sample in the samples\win32\csharp directory

demonstrates how to use the C calling interface to use OmniDriver within your C#

application.

 9: Developing Your OmniDriver Application

000-20000-400-12-201505 61

Creating a New C# VS2005 Project that Uses the .NET
Interface to OmniDriver

► Procedure

1. Create new project of type C# “Windows Application”.

2. Add a reference to NETOmniDriver64.dll and/or NETSpam64.dll:

a. In Solution Explorer, right-click on References and choose Add Reference…

b. Click the Browse tab.

c. Navigate to the OOI_HOME folder.

d. Highlight NETOmniDriver.dll and click OK.

e. Repeat Step d for NETSpam.dll if you are using any SPAM functions.

Sample source code that accesses OmniDriver via the .NET interface:

int numberOfSpectrometers;

int spectrometerIndex;

OmniDriver.NETWrapper wrapper = new OmniDriver.NETWrapper();

numberOfSpectrometers = wrapper.openAllSpectrometers();

listBoxMessages.Items.Add("number of spectrometers = " +

numberOfSpectrometers);

if (numberOfSpectrometers < 1)

return;

spectrometerIndex = 0;

listBoxMessages.Items.Add("serial number = " +

wrapper.getSerialNumber(spectrometerIndex));

Deploying Your C# Application

Normally, all that is needed to deploy your C# application is the EXE file containing the application

itself. And you will also need to deploy the appropriate OmniDriver “redistributable” installer (no

password required by this installer).

However, if your C# application uses the OmniDriver .NET assembly interface, you must also ensure that

a copy of NETOmniDriver.dll and/or NETSpam.dll is placed in the same folder as your application’s

EXE file. You can obtain these two DLL files from the OOI_HOME directory.

Developing in Delphi
The procedure in this section is based on Borland Developer Studio 2006. It will explain how to use

OmniDriver’s COM interface in your Delphi application.

► Procedure

1. Start Delphi for Microsoft Win32.

2. Click on the menu item File.New – VCL Forms Application – Delphi for Win32.

.

9: Developing Your OmniDriver Application

62 000-20000-400-12-201505

3. Do a File.SaveAll to a folder like “C:\MyApp\application”.

4. Click File.SaveAll. Specify something like “C:\MyApp\package”.

5. Click Component.ImportComponent.

a. Type of component: Choose Import a Type Library. A list of registered type libraries

will be displayed.

b. Highlight OmniDriver.NET interface. Be sure to double-check the Filename path to

ensure that you are selecting the correct version of OmniDriver.NET interface. The path

should be something like C:\Program Files\Ocean Optics\OmniDriver

\OOI_HOME\NETOmniDriver.tlb . Then click Next.

Note

If OmniDriver.NET interface is not available, click the Add button, navigate to the

OOI_HOME directory where you installed OmniDriver, highlight NETOmniDriver.tlb

and click OK. Then click Next.

6. On the Component panel:

a. On the Palette page, choose ActiveX.

b. Unit Dir Name: Change the path to the folder you just specified when you clicked

File.SaveAll (in Step 3 above), e.g. C:\My App\application.

c. Leave all other settings unchanged.

7. On the Create Unit panel, choose Add unit to NETOmniDriver.bdsproj project and click

Finish.

8. In the Uses section of the Unit1.pas source file, add the NETOmniDriver_TLB and ActiveX

namespaces.

9. In your application’s “var” section, declare an instance of “wrapper” as follows:

 wrapper: TNETWrapper;.

10. Double-click on your application’s main dialog box to generate the FormCreate method. This is

where you should add the following OTO logic to initialize OmniDriver:

 wrapper := TNETWrapper.Create(self);

 wrapper.CreateWrapper();

Note

Refer to the sample named “DelphiSample” for a complete example showing how to

control the spectrometer and acquire spectra. This sample is located in

C:\Ocean Optics\OmniDriverSamplePack\omnidriver\win32\delphi

To declare the wrapper object:

var

 wrapper: TCCoWrapper;

Statements needed to initialize OmniDriver in your application:

 9: Developing Your OmniDriver Application

000-20000-400-12-201505 63

 wrapper := TCCoWrapper.Create(self);
 wrapper.CreateWrapper();

 numberOfSpectrometers := wrapper.openAllSpectrometers();

Note

When you run your application, you may be prompted for the location of the file

NETOmniDriver_TLB.pas. This file is located in the directory containing the

OmniDriver “package” you created earlier.

Developing in Java
If you are using Java to develop applications using OmniDriver, you must install the Java JDK (not JRE)

version 1.6 or above.

Update your system PATH to point to the new java location (for example, C:\Program

Files\Java\JDK1.6.0_10). If Java is not in the system PATH, it uses the following registry key to attempt

to locate java: HKEY_LOCAL_MACHINE\SOFTWARE\JavaSoft\Java Runtime

Environment\CurrentVersion.

Troubleshooting Tips

If you run your OmniDriver-based Java application and get the exception

NoClassDefFoundError for the com.oceanoptics.omnidriver.Wrapper class it is probably

because the OOI_HOME environment variable has not been defined.

If you get the following exception when you run your OmniDriver-base Java application:

UnsatisfiedLinkError no NatUSB in java.library.path, it is probably because the

OOI_HOME directory is not in your system PATH or LD_LIBRARY_PATH on Linux.

Developing in LabVIEW
OmniDriver now provides a .NET 2.0 interface. We recommend that all LabVIEW applications use the

.NET 2.0 interface when accessing OmniDriver functions. The VI interface to OmniDriver has been

deprecated.

Note

LabVIEW versions before 2012 do not appear to fully support .NET 4.0. Based on our

experience, LabVIEW developers can only use .NET 4.0 when developing within the

LabVIEW IDE. If using LabVIEW prior to 2012, you MUST use the .NET 2.0 interface

to OmniDriver if you are developing LabVIEW applications. For a fuller discussion of

this limitation, see

http://digital.ni.com/public.nsf/allkb/32B0BA28A72AA87D8625782600737DE9

9: Developing Your OmniDriver Application

64 000-20000-400-12-201505

The directory path C:\Program Files\OceanOptics\OmniDriver\labview\win32\VersionNN.MM contains

the *.llb libraries that wrap the functions in the OmniDriver32.dll and SPAM32.dll files. Be sure to use

the version of the Omnidriver LLB files that correspond to your version of LabVIEW.

OmniDriver32.dll, SPAM32.dll, and common32.dll are located, by default, in the directory named

C:\Program Files\OceanOptics\OmniDriver\OOI_HOME. The OmniDriver sample applications that work

with LabVIEW must know the location of these DLL files. If LabVIEW cannot find the OmniDriver

DLLs, you will be asked for their location when you start the sample program.

Notes

The Wrapper library contains most of the basic spectrometer control functions. You

should only use the functions/VIs belonging to the Wrapper library object. These

functions comprise the Wrapper API. The only time you may use functions/VIs outside

of the Wrapper is if one of the wrapper VIs itself returns an object of a different type. The

following is a list of these other objects/libraries that correspond to features available on

some, but not all, of the Ocean optics spectrometer models:

- AnalogIn

- AnalogOut

- BoardTemperature

- ContinuousStrobeDelay - (LabVIEW 8.x versions only)

- ExternalTriggerDelay - (Limited features available in LabVIEW 7.1)

- GPIO

- Single Strobe

- ThermoElectric

Important: the VI interface provided by OmniDriver has been deprecated. Please use

the .NET interface to access OmniDriver from your LabVIEW application.

Cautions

For users of LabVIEW version 8.6: you must not install the FieldPoint Drivers

option. This LabVIEW option prevents OmniDriver applications from running. If

this option is installed, you will get the error message “Can’t create JVM” followed

by LabVIEW error code 1097. The only solution is to uninstall the FieldPoint

Drivers option.

Developing in VBA
The following sections provide information on how to write a “Visual Basic for Applications” macro to

access OmniDriver functionality.

 9: Developing Your OmniDriver Application

000-20000-400-12-201505 65

Writing a VBA Function

► Procedure

1. Start Excel and open a new workbook.

2. From within Excel, click on the Tools | Macro | Visual Basic Editor menu item. This opens the

Visual Basic Editor window.

3. From within the Visual Basic Editor, click on the Insert | Module menu item. This opens an

empty window titled, for example, Module1 (Code).

4. Enter your VBA function in this new window.

Accessing the OmniDriver COM Object from VBA

The following procedure assumes you are in the VBA project/module editing window.

► Procedure

1. Click on Tools.References.

2. Click the Browse button.

3. Navigate to C:\Program Files\OceanOptics\OmniDriver\OOI_HOME.

4. Highlight OmniDriver32.dll and click the Open button.

5. Make sure OmniDriver 2.0 Type Library is checked and then click OK.

Passing Arguments into Your VBA Function

When you declare your function by typing it in the Fx box, you can specify:

 Hardcoded arguments, or

 Cell locations (e.g., A1, A2, B7, etc.)

Test Running Your VBA Function

► Procedure

1. In your Excel worksheet, click on a cell and type =YourFunctionName() in the Fx box near the

top of the window.

2. Hit the Enter key while the cursor is positioned in the Fx box to invoke your function.

You may need to adjust the security level for Excel to permit the operation of your VBA macro.

To do this:

a. Select the Tools | Options menu item.

b. Click on the Security tab.

c. Click the Macro Security button and choose a security level that will permit your macro

to run.

9: Developing Your OmniDriver Application

66 000-20000-400-12-201505

Developing in Visual Basic

Using the .NET Interface to OmniDriver

PREFERRED: To use the .NET assembly interface to OmniDriver in your Visual Basic application, you

must add a reference to your assembly as follows:

► Procedure

1. Click on the Project menu item and choose Add Reference.

2. Click on the Browse tab.

3. Navigate to the OOI_HOME directory.

4. Highlight the NETOmniDriver.dll and/or NETSpam.dll and click OK.

Using the COM Interface to OmniDriver

If you are using the COM interface to OmniDriver, you must add a reference to the new OmniDriver

COM object within your Visual Basic project after you install OmniDriver.

► Procedure

To add a reference to the OmniDriver COM object within Microsoft Visual Studio 2005:

1. Click on the Project menu item and choose Add Reference.

2. In the Add Reference dialog box, select the COM tab.

3. Scroll down to "OmniDriver 2.0 Type Library", highlight it, and click OK. If you do not see

"OmniDriver 2.0 Type Library" in the list of available COM objects, it means you did not

successfully register the new OmniDriver32.dll file.

If you need to use objects and methods belonging to the SPAM module, you must also add a new

reference to SPAM 2.0 Type Library using the same procedure listed above.

If you need to register the OmniDriver32.dll and/or SPAM32.dll files, cd to the OOI_HOME directory

containing OmniDriver32.dll and type regasm32/codebase/tlb NETOmniDriver.dll and/or

regasm32/codebase/tlb NETSpam.dll.

If you are using the C/C++ interface to OmniDriver, make sure that the new OOI_HOME

directory is in the system PATH.

Developing with Microsoft Visual Basic 6.0

You may use either the COM interface or the “C” function call interface to OmniDriver when developing

with VB6. The COM interface is much simpler to use and is the recommended way to access OmniDriver

from VB6 applications.

When using the COM interface, remember to use the “Set” keyword when assigning objects to VB

variables. The following is an example of correct syntax:

 9: Developing Your OmniDriver Application

000-20000-400-12-201505 67

Set GPIOFeatureController = wrapper.getFeatureControllerGPIO(0)

If you forget the “Set” keyword, you will get the run-time error message Object doesn’t support this

property or method.

Before you can access OmniDriver COM objects from your VB6 application, you must add a reference to

the OmniDriver COM object. To do this, use the following procedure:

► Procedure

1. Click on the VB6 menu item Project.References….

2. In the list of available references, scroll down to the OmniDriver .NET interface and/or SPAM

.NET interface line and check its checkbox.

3. Click OK.

If you choose to use the C interface (not recommended), we have provided the file OmniDriver.bas,

located in VisualBasic6_Declarations subdirectory to expose OmniDriver’s C methods. You must add

this file to your VB6 project using the Add Modules option. More information on accessing OmniDriver

functionality from VB6 is located in the vb6_c_SpectrometerAcquisition sample application.

Note

We do not provide function prototype declarations for SPAM library functions. If you

need to use SPAM functions, you must use the COM interface to OmniDriver.

Modifying Your COM Application to Run on 64-bit
Windows using the .NET Interface to OmniDriver

► Procedure

1. Remove the reference to the old OmniDriver object.

2. Add a reference to the new NETOmniDriver and/or NETSpam objects. To do this:

a. In Solution Explorer pane, expand the References”node.

b. Right-click on OmniDriver and choose Remove.

c. Right-click on References and choose Add Reference…

d. Click on the Browse tab.
e. Navigate to the OOI_HOME directory (typically

C:\Program Files\Ocean Optics\OmniDriverSPAM\OOI_HOME)

f. Select NETOmniDriver.dll and click OK.

g. Repeat Step f for NetSpam.dll if you are using any SPAM functions

If you fail to make the above change, you may see a build error like the following:

“The referenced component ‘OmniDriver’ could not be found.”

9: Developing Your OmniDriver Application

68 000-20000-400-12-201505

Remove any calls to Wrapper.CreateWrapper(). This is no longer necessary.

Replace the symbolic boolean contants “true” and “false” used as input values to OmniDriver methods

with 1 and 0 respectively. Do the same when using “true” and “false” to test the return value of any

OmniDriver methods.

Troubleshooting Your Application

Runtime Errors

Symptom: FileNotFoundException was unhandled

 The specified module could not be found.

Possible Cause: The OOI_HOME directory is not in the system PATH

Test Application

A simple test application named SpectrumTest64.exe is included in the OOI_HOME folder. You can run

this app to verify OmniDriver was installed correctly.

This app is the vs2005_cpp_cpp_SpectrumTest sample

Modifying Your C++ Project Settings for 64-bit
Windows
The samples that come with OmniDriver are initially set to generate 32-bit Windows EXEs. The

following shows you how to modify the project settings for the samples to generate 64-bit EXEs.

Create an x64 Platform Option

► Procedure

1. Choose Configuration Manager from the Solution Platforms drop-down menu at the

top of the Visual Studio GUI.

2. Choose <New…> from the Active solution platform drop-down menu.

3. Choose x64 from the Type or select the new platform drop-down menu.

4. Choose Win32 from the Copy settings from drop-down menu.

5. Check Create new project platforms.

6. Make sure the x64 platform is selected when you build your application.

 9: Developing Your OmniDriver Application

000-20000-400-12-201505 69

Change Your include/header File Location

If you installed the new 64-bit OmniDriver product to a new location, you must modify the project

property settings of your Visual Studio project to specify the location of the 64-bit version of

OmniDriver:

Project | Properties | C/C++ | General | Additional Include Directories

You may also need to change the setting for the location of the Java header files to find them where you

installed the 64-bit Java JDK (typically C:\Program Files\Java\jdk1.6.0_21\include).

Change Your Library Dependencies

 Change common32.lib to common64.lib

 Change OmniDriver32.lib to OmniDriver64.lib

 Change SPAM32.lib to SPAM64.lib

You can change the library dependencies by navigating the menu hierarchy as follows:

 Project | Properties | Linker | Input | Additional Dependencies

If you fail to make the above changes so that your application links to the 64-bit versions of the

OmniDriver libraries, you will get a number of linker errors like the following:

“error LNK2001: unresolved external symbol Wrapper_Create”

You may also need to change the path to search for the above libraries. You can change this path by

navigating the menu hierarchy as follows:

Project | Properties | Linker | General | Additional Library Directories

Output EXE Location

The EXE produced when you build your 64-bit application will be placed in a new location. By default,

it will be located in <project folder>\x64\release (or <project folder>\x64\debug).

9: Developing Your OmniDriver Application

70 000-20000-400-12-201505

000-20000-400-12-201505 71

Chapter 10

Sample Programs

Overview
This section contains OmniDriver sample programs for the following programming languages:

 C

 C++

 C#

 Delphi

 Java

 LabVIEW

 Visual Basic

 Other Samples

C Samples
NationalInstrumentsCVI_Cinterface_Demo

Location: OmniDriver\samples\c\NationalInstrumentsCVI_Cinterface_Demo

Language: C, National Instruments CVI C compiler

Access method: uses the C interface to access OmniDriver functionality.

API: Wrapper

GUI: No

Demonstrates how to do the the following:

 - Access a spectrometer

 - Display spectrometer name and serial number

 - Display wavelength coefficients

 - Set acquisition parameters (integration time, etc.)

 - Acquire a spectrum.

Borland_C_interface_sample

Location: OmniDrivr\win32\c

Language: C++

Access method: “C” interface

10: Sample Programs

72 000-20000-400-12-201505

C++ Samples
vs2005_cpp_cpp_MultithreadedTimerTest

Language: C++, Microsoft Visual Studio 2005

Access method: uses the C++ interface to access OmniDriver functionality.

API: Wrapper

GUI: No

Demonstrates how to do the following:

- Control multiple spectrometers from multiple threads running

 concurrently

 - Use QueryPerformanceCounter() to measure elapsed times

vs2005_cpp_cpp_SpectrumTest

Language: C++, Microsoft Visual Studio 2005

Access method: Uses the C++ interface to access OmniDriver functionality.

API: Wrapper

GUI: No

Demonstrates how to do the following (minimal application):

 - Access a spectrometer

 - Set acquisition parameters (integration time, etc.)

 - Acquire a spectrum.

vs2005_cpp_c_SpectrometerTest

Language: C++, Microsoft Visual Studio 2005

Access method: Uses the C interface to access OmniDriver functionality.

API: Wrapper

GUI: No

Demonstrates how to do the following (minimal application):

 - Access a spectrometer

 - Display spectrometer name and serial number

 - Display wavelength coefficients

 - Set acquisition parameters (integration time, etc.)

 - Acquire a spectrum.

vs2005_cpp_cpp_StrobeEnableSample

Language: C++, Microsoft Visual Studio 2005

Access method: Uses the C++ interface to access OmniDriver functionality.

API: Wrapper

GUI: No

Demonstrates how to do the following:

 - Turn the lamp on and off

 - Acquire spectra

vs2005_cpp_c_FeatureSample

Language: C++, Microsoft Visual Studio 2005

 10: Sample Programs

000-20000-400-12-201505 73

Access method: Uses the C interface to access OmniDriver functionality.

API: Wrapper

GUI: No

Demonstrates how to do the following:

 - Use the GPIO (general purpose I/O) feature

 - Use the continuous strobe feature

 - Get API version

 - Get API build number (of the Wrapper API)

 - Get serial number, firmware version, spectrometer name

 - Get and display wavelength coefficients

 - Set acquisition parameters

 - Get a spectrum and display pixel values

vs2005_cpp_cpp_TECSample

Language: C++, Microsoft Visual Studio 2005

Access method: uses the C++ interface to access OmniDriver functionality.

API: Wrapper

GUI: No

Demonstrates how to do the following:

 - Use the thermoelectric cooling (TEC) feature

vs2005_cpp_cpp_TriggerDemoOne

Language: C++, Microsoft Visual Studio 2005

Access method: uses the C++ interface to access OmniDriver functionality.

API: Wrapper

GUI: No

Demonstrates how to do the following:

 - Use external trigger mode 1 (software trigger mode)

vs2005_cpp_cpp_SingleShotSample

Language: C++, Microsoft Visual Studio 2005

Access method: Uses the C++ interface to access OmniDriver functionality.

API: Wrapper

GUI: No

Demonstrates how to do the following:

- Use external trigger mode 4 (single-shot mode, aka quasi-realtime acquisition mode)

vs2005_cpp_cpp_mfc_Odlumens2

Language: C++, Microsoft Visual Studio 2005

Access method: uses the C++ interface to access OmniDriver functionality.

API: Wrapper

GUI: Yes (MFC)

Demonstrates how to do the following:

 - Perform CIE color calculations using functions from the SPAM library

vs2005_cpp_cpp_DLLAccess

10: Sample Programs

74 000-20000-400-12-201505

Language: C++, Microsoft Visual Studio 2005

Demonstrates how to do the following:
- Access OmniDriver functionality from a user-written DLL (as opposed to calling OmniDriver

 functions from an EXE).

vs6_cpp_cpp_MultiChannelDemo

Language: C++, Microsoft Visual C++ 6.0

Access method: Uses the C++ interface to access OmniDriver functionality.

API: Wrapper

GUI: No

Demonstrates how to do the following:
- Access OmniDriver functionality in applications written using Microsoft Visual C++ 6.0

 - Acquire a spectrum from a multi-channel spectrometer

vs6_cpp_cpp_SpectrumTest

Language: C++, Microsoft Visual C++ 6.0

Access method: Uses the C++ interface to access OmniDriver functionality.

API: Wrapper

GUI: No

Demonstrates the following:

- Minimalist implementation of the logic necessary to acquire a spectrum

Language: C++

IDE: Borland C++ Builder 2006

Access method: C

API: Wrapper

GUI: yes

Demonstrates the following:

- get the serial number of the spectrometer

- acquire a spectrum

C# Samples
CSharpSpectrometerTest

Language: C#

Access method: NET

API: Wrapper

GUI: No

Demonstrates the following:

 - Absolute simplest demonstration of how to acquire a spectrum from a spectrometer

CSharp_StrobeEnableSample

Language: C#

Access method: NET

 10: Sample Programs

000-20000-400-12-201505 75

API: Wrapper

GUI: No

Demonstrates to do the following:

 - Turn the lamp on and off.

 - Use the Auto Strobe feature.

CSharp_TECSample

Language: C#

Access method: NET

API: Wrapper

GUI: No

Demonstrates the following:

 -The Jaz Indy feature

- The External Temperature Wrapper feature (USB2000, USB4000). The temperature probe plugs

into the USB-LS450, which then plus into the spectrometer.

- How to use the Thermo-electric Cooling (TEC) feature. This feature is available on several

 spectrometers, such as the QE65000, NIR256, and NIR512

- Pixel binning with the STS spectrometer

ConcurrentAcquisitionThreads

Language: C#

Access method: Uses the C interface to access OmniDriver functionality.

API: Wrapper

GUI: No

Demonstrates how to do the following:

 - Acquire spectra from two spectrometers running concurrently on two separate threads.

See also: Visual Basic sample which uses the COM interface to OmniDriver to drive two

spectrometers running concurrently on two threads

CSharp_SingleShotSample

Language: C#

Access method: NET

API: Wrapper

GUI: No

Demonstrates how to do the following:

- Use Single Shot mode (Hardware Trigger mode 4) to set a relatively lengthy integration time but still

control the timing of the start of acquisition fairly accurately (within 1/2 of the minimum integration

time of your spectrometer) based on when you call wrapper.getSpectrum().

vs2005_net_PlotSpectrum

Language: C#

Access method: NET

API: Wrapper

GUI: Yes

Demonstrates how to do the following:

- Acquire spectra and display them graphically

10: Sample Programs

76 000-20000-400-12-201505

STSFeatures

IDE : Visual Studio 2010

Language: C#

Access method: NET

API: Wrapper

GUI: Yes

Demonstrates how to do the following:

- Pixel binning

- How to recover from a non-existent hardware trigger signal

Delphi Samples
Delphi_Borland_COM_Interface_sample

Language: Delphi

IDE: Borland Delphi for Microsoft Win32 (Borland Developer Studio 2006)

Access method: COM

API: Wrapper

GUI: Yes

Demonstrates how to do the following:

 - Access a spectrometer

 - Display spectrometer name and serial number

 - Set acquisition parameters (integration time, etc.)

 - Acquire a spectrum.

 - Use the Thermo-electric Cooling (TEC) feature

Java Samples
ConcurrentAcquisitionThreads

Location: OmniDriver\samples\java\ConcurrentAcquisitionThreads

Language: Java

Access method: accesses OmniDriver functionality directly from the OmniDriver.jar file

API: Wrapper

GUI: Yes (NetBeans framework)

Demonstrates how to do the following:

 - Access a spectrometer

 - Display serial number

 - Acquire spectra from two spectrometers concurrently using two threads

 - Compute the average speed of acquisition, in spectra per second, for each spectrometer

Notes:

This sample should be run from within the NetBeans IDE as it requires certain jar files provided

by the NetBeans application framework.

 10: Sample Programs

000-20000-400-12-201505 77

HighSpeedBasicSample

Location: OmniDriver\samples\java\HighSpeedBasicSample

Language: Java

Access method: accesses OmniDriver functionality directly from the OmniDriver.jar file

API: Wrapper

GUI: No (console app)

Demonstrates the following:

 - How to use the high speed acquisition capabilities of the Wrapper API

Notes:

This app was developed using the NetBeans IDE. However, because of the large memory

requirement of this sample, please run this application from the command-prompt using the

run.bat supplied in the main folder for this sample

C:\Program Files\OceanOptics\OmniDriver\samples\java\HighSpeedBasicSample

Depending on the speed of your PC, this may take up to one minute to complete.

HighSpeedAcquisitionSample

Location: OmniDriver\samples\java\HighSpeedAcquisitionSample

Language: Java

Access method: Accesses OmniDriver functionality directly from the OmniDriver.jar file

API: Wrapper

GUI: No (console app)

Demonstrates how to do the following:

 - Use the hardware trigger modes

 - Use the high speed acquisition capabilities of the Wrapper API

Notes:

This application was developed using the NetBeans IDE. You can build it and run it within the

IDE, or you can run it from the command-prompt using run.bat. To run this sample application

from the command-prompt, use the "run.bat" command found in the

samples/java/HighSpeedAcquisitionSample directory.

JavaWrapperSample

Location: OmniDriver\samples\java\JavaWrapperSample

Language: Java

Access method: Accesses OmniDriver functionality directly from the OmniDriver.jar file

API: Wrapper

GUI: No

Demonstrates how to do the following:

 - Access a spectrometer

 - Display serial number and firmware version number

 - Use the Board Temperature feature

 - Use the Continuous Strobe feature

 - Use the LS450 feature

 - Set acquisition parameters (integration time, boxcar width, etc.)

 - Acquire a spectrum

Notes:

This sample application was developed using the NetBeans IDE. You can build it and run it

within the IDE, or run it from the command-prompt. To do so, use the run.bat command

found in the samples/java/JavaWrapperSample directory.

10: Sample Programs

78 000-20000-400-12-201505

MultiChannelSample

Location: OmniDriver\samples\java\MultiChannelSample

Language: Java

Access method: accesses OmniDriver functionality directly from the OmniDriver.jar file

API: Wrapper

GUI: No (console app)

Demonstrates how to do the following:

 - Access a multi-channel spectrometer

 - Acquire spectra from two channels

Notes:

This sample application was developed using the NetBeans IDE. You can build it and run it

within the IDE, or you can run it from the command-prompt.To do so, use the "run.bat" command

found in the samples/java/MultiChannelSample directory.

Simple

Location: OmniDriver\samples\java\Simple

Language: Java

Access method: Accesses OmniDriver functionality directly from the OmniDriver.jar file

API: Wrapper

GUI: No (console app)

Demonstrates the following:

 - Absolute minimum effort to acquire spectra

Notes:

 This sample application was NOT developed using the NetBeans IDE. To build it, use build.bat.

 To run it, use runtest.bat.

SpectrometerTest

Location: OmniDriver\samples\java\SpectrometerTest

Language: Java

Access method: accesses OmniDriver functionality directly from the OmniDriver.jar file

API: Wrapper

GUI: No (console app)

Demonstrates the following:

 - Absolute minimum effort to acquire spectra

Notes:

This app was developed using the NetBeans IDE. You can build it and run it within the IDE, or

you can run it from the command-prompt using run.bat

ThreadingSpectrometer

Location: OmniDriver\samples\java\ThreadingSpectrometer

Language: Java

Access method: Accesses OmniDriver functionality directly from the OmniDriver.jar file

API: Wrapper

GUI: No (console app)

 10: Sample Programs

000-20000-400-12-201505 79

Demonstrates how to do the following:

 - Use hardware trigger modes

 - Control a spectrometer from a background thread

Notes:

This sample application was developed using the NetBeans IDE. You can build it and run it

within the IDE, or you can run it from the command-prompt using run.bat. After starting this

application, you must generate a hardware trigger signal to cause it to acquire a spectrum.

WavelengthCalibrationDemo

Location: OmniDriver\samples\java\WavelengthCalibrationDemo

Language: Java

Access method: Accesses OmniDriver functionality directly from the OmniDriver.jar file

API: Wrapper

GUI: No (console app)

Demonstrates the following:

- How to set wavelength calibration coefficients into the spectrometer's EEPROM or into a

temporary buffer

Notes:

 This sample application was developed using the NetBeans IDE.

You can build it and run it within the IDE, or you can run it from the command-prompt using

run.bat

LabVIEW Samples
When you start the LabVIEW samples you must inform the project of the location of your

OmniDriver32.dll, common32.dll and SPAM32.dll files and the libraries provided by OmniDriver (e.g.,

Wrapper.llb). For each file click on Browse... and select the files or library function.

ContinuousStrobeSample.vi

SetElectricDarkSample.vi

SpectrometerTestGPIO.vi

StrobeEnableSample.vi

SpectrometerTest.vi

Language: LabVIEW 7.1 and 8.5

Access method: LabVIEW libraries provided by OmniDriver

API: Wrapper

GUI: Yes

Demonstrates how to do the following:

 - Access a spectrometer

 - Set acquisition parameters (integration time, etc.)

 - Acquire a spectrum

 - Display the spectrum in a simple graph

10: Sample Programs

80 000-20000-400-12-201505

TECSample.vi

Language: LabVIEW 7.1 and 8.5

Access method: LabVIEW libraries provided by OmniDriver

API: Wrapper

GUI: yes

Demonstrates the following:

 - How to use the Thermo-electric Cooling (TEC) feature supported by several spectrometers

Visual Basic Samples
vb6_c_SpectrometerAcquisition

Language: Visual Basic 6.0 (aka VB6)

Access method: Uses the C interface to access OmniDriver functionality.

API: Wrapper

GUI: Yes

Demonstrates how to do the following:

 - Access a spectrometer

 - Obtain the spectrometer name, serial number, and firmware version

 - Use the Continuous Strobe feature

 - Use the Thermo-electric Cooling (TEC) feature

 - Use the GPIO feature (general purpose I/O)

 - Determine number of pixels and number of dark pixels provided by spectrometer

 - Set acquisition parameters (integration time, boxcar width, electric dark correction)

 - Acquire a spectrum

vs2005_net_ContinuousStrobe_and_SingleStrobe

Language: Visual Basic

Access method: NET

API: Wrapper

GUI: yes

Demonstrates the following:

 - How to use the Single-strobe and Continuous-strobe features

vs2005_net_LS450Sample

Language: Visual Basic

Access method: NET

API: Wrapper

GUI: yes

Demonstrates how to do the following:

 - Access a spectrometer

 - Obtain the spectrometer serial number

 - Strobe enable (turn the lamp on/off)

 - Set LS450 into pulsed/non-pulse mode

 10: Sample Programs

000-20000-400-12-201505 81

vs2005_net_MultiThreading

Language: Visual Basic

Access method: NET

API: Wrapper

GUI: yes

Demonstrates the following:

 - How to acquire spectra from two spectrometers running simultaneously on two different threads

vs2005_net_SPAMColorLAB

Language: Visual Basic

Access method: NET

API: Wrapper

GUI: yes

Demonstrates how to do the following:

 - Use the functions in the SPAM library to compute L*A*B* colorspace values

 - Choose an observer and an illuminant

 - Compute the X,Y,Z tristimulus values

vs2005_net_WrapperDemo

Language: Visual Basic

Access method: NET

API: Wrapper

GUI: Yes

Demonstrates how to do the following:

 - Access a spectrometer

 - Obtain the spectrometer serial number

 - Strobe enable (turning the lamp on/off)

 - GPIO (general purpose I/O bits)

 - Thermo-electric temperature control

- Set acquisition parameters (integration time, boxcar width, scans to average, electric

dark correction)

 - Acquire a spectrum

SPAM Samples
The following are samples for SPAM for C++, C# and Visual Basic:

C++: spam\win32\cpp\vs2005_cpp_cpp_Colortemperature

C++: spam\win32\cpp\vs2005_cpp_cpp_mfc_Odlumens2

C#: spam\win32\csharp\vs2005_SPAM_Peaks

Visual Basic: spam\win32\visualbasic\vs2005_SPAMColorLAB

10: Sample Programs

82 000-20000-400-12-201505

Other Samples
Language: Excel, MatLab

Access method: COM

API: Wrapper

GUI: Yes

Demonstrates how to do the following:

 - Access a spectrometer

 - Display spectrometer name and serial number

 - Set acquisition parameters (integration time, etc.)

 - Acquire a spectrum

000-20000-400-12-201505 83

Chapter 11

Redistributing OmniDriver with
Your Application

Overview
Customers who have purchased the OmniDriver product have a royalty-free right to redistribute the

runtime version of OmniDriver along with the applications they have developed that depend upon

OmniDriver to operate. Redistribution of OmniDriver components is subject to the terms and conditions

of Ocean Optics license agreements.

We provide automated installers to facilitate redistributing the necessary components of OmniDriver to

end-user computers so that, in most cases, it is not necessary to manually copy files to them. These new

installers are located on the Ocean Optics FTP server at ftp://downloads.oceanoptics.com/OmniDriver.

The name of each installer indicates the product, version, and target operating system. For example, use

the file named OmniDriver_1.6_Win64_redistributable_installer.exe to install the OmniDriverSPAM on

a 64-bit Windows PC. No password is required.

If you choose to install OmniDriver on your end-user’s computer without requiring them to run a separate

OmniDriver installation, use the following procedure.

► Procedure

1. Copy the following directories (and everything beneath them) to your customer’s PC:

 OOI_HOME

 _jvm (this directory must be placed on a peer level with the OOI_HOME directory)

 ezusb_driver (32-bit Windows platform only)

 winusb_driver (64-bit Windows platform only)

 labview (optional: if your application was written in LabVIEW)

2. Define the OOI_HOME environment variable. Give it a value like:

C:\Program Files\Ocean Optics\OmniDriver\OOI_HOME

Essentially, set this variable to the location of the OOI_HOME directory.

3. Add the pathname of the OOI_HOME directory to your systems PATH environment variable.

4. On 64-bit Windows systems: cd into the winusb_driver folder and issue the command

dpinst64.exe q /lm /sa

This installs the signed WinUSB driver files into the Windows system area. As a result, when

you plug in your spectrometer, it will automatically find and install the required driver.

ftp://downloads.oceanoptics.com/OmniDriver

11: Redistributing OmniDriver with Your Application

84 000-20000-400-12-201505

5. Optional: If your application relies on COM (deprecated now that we are supporting .NET

assemblies), you must issue the following command(s) to expose the OmniDriver and/or SPAM

assemblies as COM objects:

 RegAsm32.exe /codebase /tlb NETOmniDriver.dll

 RegAsm32.exe /codebase /tlb NETSpam.dll (if your app uses the SPAM functions)

The RegAsm32.exe utility is provided in the OOI_HOME directory. Also included is

RegAsm64.exe if you are targeting a 64-bit Windows platform.

Deploying Your C# Application

Normally, all that is needed to deploy your C# application is the EXE file containing the application

itself. And you will also need to deploy the appropriate OmniDriver “redistributable” installer (no

password required by this installer).

However, if your C# application uses the OmniDriver .NET assembly interface, you must also ensure that

a copy of NETOmniDriver.dll and/or NETSpam.dll is placed in the same folder as your application’s

EXE file. You can obtain these two DLL files from the OOI_HOME directory.

For Mac Users
It is not necessary to install Java because it is preinstalled on the Mac. The Mac comes with USB support

built-in. So there is no need to download or install a USB driver.

► Procedure

1. Define the OOI_HOME environment variable to point to the location of the OOI_HOME

directory.

2. Add the OOI_HOME directory to the system PATH environment variable.

For Linux Users

► Procedure

1. Make sure that the latest version of the open-source Linux USB driver named "libusb" has been

installed.

2. Copy the file 10-oceanoptics.rules from the Drivers directory into /etc/rules.d and then restart

udev. On Fedora and similar Linux distros, you can restart udev with the following commands:

 udevcontrol reload_rules

 udevstart

 If this does not successfully restart udev, you will need to reboot.

3. Define the OOI_HOME environment variable to point to the location of the OOI_HOME

directory.

4. Add the OOI_HOME directory to the system PATH environment variable.

000-20000-400-12-201505 85

Chapter 12

Wrapper API Reference

Overview
The Wrapper API is the collection of objects and methods your application uses to control spectrometers

and acquire data from them. This section gives detailed information about a few of these functions. For a

complete description of all objects and methods comprising the “Wrapper API”, refer to the javadocs for

the OmniDriver and SPAM libraries.

getCalibrationCoefficientsFromEEProm()
Read out all calibration coefficents from the spectrometer’s EEPROM. This includes coefficients for

stray light correction, wavelength calibration, and non-linearity calibration.

Visual Basic – COM interface

Dim coefficients As OmniDriver.CCoCoefficients

coefficients =

wrapper.getCalibrationCoefficientsFromEEProm(spectrometerIndex)

listBox.Items.Add("getStrayLightSlope = " &

coefficients.getStrayLightSlope())

listBox.Items.Add("getStrayLight = " & coefficients.getStrayLight())

listBox.Items.Add("getWlIntercept = " & coefficients.getWlIntercept())

listBox.Items.Add("getWlFirst = " & coefficients.getWlFirst())

listBox.Items.Add("getWlSecond = " & coefficients.getWlSecond())

listBox.Items.Add("getWlThird = " & coefficients.getWlThird())

highSpdAcq_AllocateBuffer()
This is the first highSpdAcq method you should call when using high-speed data acquisition mode. This

method will allocate internal buffer space to accommodate the specified number of spectra.

Parameters

void highSpdAcq_AllocateBuffer(spectrometerIndex,numberOfSpectraToAcquire)

int spectrometerIndex 0-N, specifies which attached spectrometer to access

int numberOfSpectraToAcquire should be in the range 1-3000

12: Wrapper API Reference

86 000-20000-400-12-201505

highSpdAcq_GetNumberOfSpectraAcquired()
Call this method to reliably determine the number of spectra acquired by the preceding call to

highSpdAcq_StartAcquisition(). In most cases it will return the same value you specified for

the numberOfSpectraToAcquire parameter of the highSpdAcq_AllocateBuffer()

method. However, if you called highSpdAxq_StopAcquisition() before all requested spectra

have been collected, the number returned by this method will be smaller.

Parameters

int highSpdAcq_GetNumberOfSpectraAcquired()

returns int the number of spectra successfully acquired.

highSpdAcq_GetSpectrum()
Call this method to obtain the actual spectra acquired in high-speed data mode. This method should be

called after you have called highSpdAcq_StartAcquisition(). Normally you will place calls to

this method inside a loop, once for each spectrum acquired.

Parameters

double[] highSpdAcq_GetSpectrum(spectrumNumber)

int spectrumNumber 0-N, specifies which spectrum from the internal buffer area to return

returns double[] an array of pixel values constituting the spectrum. Returns null if no spectra

have been acquired yet, or if fewer spectra have been acquired than the spectrumNumber you

specified.

highSpdAcq_GetTimeStamp()
This method returns a time stamp associated with the specified spectrum. In high-speed data acquisition

mode, many spectra are acquired and stored internally by means of a single call to the

highSpdAcq_StartAcquisition() method. OmniDriver generates a time stamp at the moment

each spectrum is acquired and stores it along with the spectrum itself. Thus, your application can

precisely identify the time at which each individual spectrum was acquired.

Parameters

HighResTimeStamp highSpdAcq_GetTimeStamp(spectrumNumber)

int spectrumNumber 0-N, specifies which spectrum from the internal buffer area to return

returns a HighResTimeStamp object which specifies the time of acquisition for the

corresponding spectrum. Returns null if no spectra have been acquired yet, or if fewer spectra

have been acquired than the spectrumNumber you specified.

 12: Wrapper API Reference

000-20000-400-12-201505 87

highSpdAcq_IsSaturated()
Tells you whether the specified spectrum, acquired via high-speed data acquisition mode, was saturated.

Parameters

boolean highSpdAcq_IsSaturated(spectrumNumber)

int spectrumNumber 0-N, specifies the spectrum for which we want to know if it was saturated

returns boolean true if the spectrum was saturated, or if no spectra have been acquired yet, or if

fewer spectra have been acquired than the spectrumNumber you specified. Returns false if the

spectrum exists and was not saturated.

highSpdAcq_StartAcquisition()
This method initiates collection of spectra in high-speed data acquisition mode. It will not return until

either the specified number of spectra have been acquired, or you call

highSpdAcq_StopAcquisition(). You should first call the

highSpdAcq_AllocateBuffer() to specify the number of spectra you wish to acquire.

Parameters

void highSpdAcq_StartAcquisition(spectrometerIndex)

int spectrometerIndex 0-N, specifies which attached spectrometer to access

highSpdAcq_StopAcquisition()
This method aborts the currently active high-speed acquisition process. When you call this method, it will

cause the highSpdAcq_StartAcquisition() method to return as soon as the current spectrum

has been acquired, even if this results in fewer spectra being acquired than you originally specified when

you called the highSpdAcq_AllocateBuffer() method.

This method must be called from a different thread than the thread from which the

highSpdAcq_StartAcquisition() method was called because

highSpdAcq_StartAcquisition() will block (i.e., not return to the caller) until all requested

spectra have been acquired.

It is normally not necessary to call this method. Call this method only if you wish to interrupt the

acquisition process prematurely.

Parameters

void highSpdAcq_StopAcquisition()

 No parameters or return values.

12: Wrapper API Reference

88 000-20000-400-12-201505

setBoxcarWidth()
Calling Conventions:

Java
 wrapper.setBoxcarWidth(int spectrometer, int

numberOfPixelsOnEitherSideOfCenter)

C
 Wrapper_setBoxcarWidth()

C++

LabVIEW

VisualBasic

setCalibrationCoefficientsIntoBuffer()
This method writes the specified coeffients into a buffer area used by OmniDriver to correct raw pixel

values when returning spectra to the user. This method does not write the coefficients into the EEPROM

of the spectrometer. To protect against accidental destruction of the calibration coefficients in the

spectrometer, you must first call the insertKey(“Mat429sky”) method before this method will do

anything.

Use this method (rather than the EEPROM flavor) when you want to test the effect of new calibration

coefficients, but do not want to write them into the spectrometer itself.

Refer to the description of the setCalibrationCoefficientsIntoEEProm() method below for more details.

setCalibrationCoefficientsIntoEEProm()
This method writes various calibration coefficients into the EEPROM of the spectrometer. If invalid

calibration coefficients are written into the EEPROM, the spectrometer will no longer return valid data, so

be very careful with the use of this method. To protect against accidental destruction of the calibration

coefficients in the spectrometer, you must first call the insertKey(“Mat429sky”) method before

this method will do anything.

Recommended: If you want to test the effect of your new calibration settings before permanently burning

them into the spectrometer’s EEPROM, use the setCalibrationCoefficientsIntoBuffer()

method. This method causes all subsequent calls to getSpectrum() to use your new settings, but does

not write them into the EEPROM of the spectrometer. This allows you to see the effect of your new

coefficients.

 12: Wrapper API Reference

000-20000-400-12-201505 89

Parameters

boolean setCalibrationCoefficeientsIntoEEProm(spectrometerIndex,

coefficients, applyWavelengthCoefficients, applyStrayLightConstant,

applyNonlinearityCoefficients)

int spectrometerIndex 0-N, specifies which attached spectrometer to access

Coefficients coefficients a data structure you must initialize with settings for any of the

calibration coefficients you wish to set in the spectrometer EEPROM area

boolean applyWavelengthCoefficients must be true for wavelength coefficient settings to be

written into EEPROM, otherwise these values will be ignored

boolean applyStrayLightConstant must be true for the stray light constant to be written into the

EEPROM

boolean applyNonlinearityCoefficients must be true for the nonlinearity coefficients to be

written into EEPROM

See also:
 setCalibrationCoefficientsIntoBuffer()

Visual Basic

Dim coefficients As New OmniDriver.CCoCoefficients

Dim spectrometerIndex As Integer

coefficients.CreateCoefficients()

coefficients.setWlIntercept(177.7322)

coefficients.setWlFirst(0.380633)

coefficients.setWlSecond(-0.00001346845)

coefficients.setWlThird(-2.9798580E-009)

coefficients.setStrayLight(3.0) ' slope is assumed to be 0

‘alternatively: coefficients.setStrayLightB(1.1, 2.0) ' intercept,slope

coefficients.setNlCoef0(2.0) ‘ bogus numbers for demonstration only

coefficients.setNlCoef1(2.1)

coefficients.setNlCoef2(2.3)

coefficients.setNlCoef3(2.4)

coefficients.setNlCoef4(2.5)

coefficients.setNlCoef5(2.6)

coefficients.setNlCoef6(2.7)

coefficients.setNlCoef7(2.8)

coefficients.setNlOrder(7)

wrapper.insertKey("Mat429sky") ' enable setCalibrationCoefficients()

spectrometerIndex = 0

' In the following call, the three boolean arguements are as follows:

' boolean applyWavelengthCoefficients, boolean applyStrayLightConstant,

‘ and boolean applyNonlinearityCoefficients)

wrapper.setCalibrationCoefficientsIntoEEProm(spectrometerIndex, coefficients,

True, True, True)

12: Wrapper API Reference

90 000-20000-400-12-201505

setIntegrationTime()

Units: microseconds.

See Why doesn’t getSpectrum() return when I think it should? In Appendix A for more information.

Calling Conventions

 C interface
Dim wrapper_handle as int32

Dim spectrometer_index as int32

Dim integration_time as int32 ‘ units are in microseconds

Wrapper_setIntegrationTimeTime(wrapper_handle, spectrometer_index,

integration_time)

000-20000-400-12-201505 91

Chapter 13

SPAM Library

Overview
Ocean Optics provides browser-based javadocs documentation for the individual SPAM objects and

methods. You can find the SPAM javadocs in the “docs\javadocs.spam” subdirectory of your

OmniDriver installation directory. Double-click on the file index.html in this directory. This will open

the SPAM documentation in your browser.

Perhaps the best source of information on how to use the SPAM library is provided by the sample

applications that are provided with the OmniDriverSPAM and SPAM software products.

All OmniDriver and SPAM samples are combined into a single installer, named

Windows_OmniDriver_and_SPAM_Sample_Pack. You can download the installer from

http://www.oceanoptics.com/Technical/softwaredownloads.asp. No password is required to install

the samples.

By default, all samples are installed into directories beneath a common root directory:

C:\Ocean Optics\OmniDriverSamplePack-1.65 (1.65 is the version number, and it will change).

The following SPAM samples are provided for the Windows operating system:

Language Name of Sample Location

C# vs2005_SPAM_Peaks samples\spam\win32\csharp\vs2005_SPAM_Peaks

VB vs2005_SPAMColorLAB samples\spam\win32\visualbasic\vs2005_SPAMColorLAB

C++ ColorTemperature samples\spam\win32\cpp\vs2005_cpp_cpp_ColorTemperature

C++ SpectrumPeaks samples\spam\win32\cpp\vs2005_cpp_cpp_SpectrumPeaks

C++ ODLumens2 samples\spam\win32\cpp\vs2005_cpp_cpp_mfc_Odlumens2

C AdvancedColor samples\spam\win32\cpp\vs2005_cpp_c_AdvancedColor

http://www.oceanoptics.com/Technical/softwaredownloads.asp

13: SPAM Library

92 000-20000-400-12-201505

Notes

Although these samples are located beneath a directory named win32, you may easily

change the Visual Studio settings to build them in 64-bit mode.

All Windows samples were created using Microsoft Visual Studio 2005. However, if you

are using a newer version of Visual Studio, you can easily use the Visual Studio

conversion wizard to import these projects into your IDE.

Important Tips

 Always use the SpectralMath wrapper class to create any SPAM objects you need. This is

necessary to avoid memory leaks in your application. The sample applications show how to do

this.

 Remember to explicitly call the Dispose() method if you are writing a .NET application. Calling

the Dispose() method on your SPAM objects when you no longer need those objects prevents

memory leaks. This is only necessary if you are using the .NET interface to access OmniDriver

and SPAM objects.

 If your app is multi-threaded, it is recommended that you create a separate SpectralMath

instance for each thread.

C++ Sample

The following is an example of what a C++ SPAM application should look like. This is the source code

from the C++ sample named “SpectrumPeaks”.

#include "stdafx.h"

#include "Wrapper.h"

#include "SpectralMath.h"

#include "AdvancedPeakFinding.h"

int _tmain(int argc, _TCHAR* argv[])

{

 double baseline;

 int indexOfPeak;

 int minimumIndicesBetweenPeaks;

 int numberOfSpectrometers;

 int peakIndex;

 int startingIndex;

 DoubleArray yDoubleArray;

 DoubleArray xDoubleArray;

 Wrapper* pWrapper;

 pWrapper = new Wrapper();

 numberOfSpectrometers = pWrapper->openAllSpectrometers();

 printf("numberOfSpectrometers = %d\n",numberOfSpectrometers);

 yDoubleArray = pWrapper->getSpectrum(0);

 xDoubleArray = pWrapper->getWavelengths(0);

 13: SPAM Library

000-20000-400-12-201505 93

 // Now use the SPAM functions to identify the peaks

 SpectralMath* pSpectralMath = new SpectralMath();

 peakIndex = 100;

 AdvancedPeakFinding advancedPeakFinding;

 advancedPeakFinding = pSpectralMath->createAdvancedPeakFindingObject();

 startingIndex = 0;

 minimumIndicesBetweenPeaks = 100;

 baseline = 100.0;

 do

 {

 indexOfPeak = advancedPeakFinding.getNextPeakIndex(yDoubleArray,

 startingIndex, minimumIndicesBetweenPeaks, baseline);

 if (indexOfPeak == 0)

 break;

 printf("index of peak = %d\n",indexOfPeak);

 startingIndex = indexOfPeak;

 } while (indexOfPeak > 0);

 printf("peak X value %f\n",spectrumPeak.getPeakXValue());

 delete pSpectralMath;

 return 0;

}

CSharp Sample

The following is an example of what a C# SPAM application should look like. This is the source code

from the CSharp sample named “vs2005_SPAM_Peaks”.

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Text;

using System.Windows.Forms;

// Don't forget to add references to "NETOmniDriver" and "NETSpam"

namespace vs2005_SPAM_Peaks

{

 public partial class Form1 : Form

 {

 int numberOfSpectrometersFound;

 int spectrometerIndex; // indicates which spectrometer we are using

 OmniDriver.CCoWrapper wrapper;

 SPAM.CCoSpectralMath spectralMath;

 public Form1()

 {

 InitializeComponent();

 // Initialize the wrapper object

13: SPAM Library

94 000-20000-400-12-201505

 wrapper = new OmniDriver.CCoWrapper();

 spectralMath = new SPAM.CCoSpectralMath();

 spectrometerIndex = -1; // set it to an invalid value

 }

 private void buttonDiscoverSpectrometers_Click(object sender,

 EventArgs e)

 {

 numberOfSpectrometersFound = wrapper.openAllSpectrometers();

 if (numberOfSpectrometersFound < 1)

 {

 listBoxMessages.Items.Add("No spectrometers found");

 spectrometerIndex = -1; // set it to an invalid value

 return;

 }

 spectrometerIndex = 0; // arbitrarily choose the first

 // spectrometer for this demo

 listBoxMessages.Items.Add("Selecting spectrometer: " +

 wrapper.getName(spectrometerIndex));

 }

 private void buttonFindPeaks_Click(object sender, EventArgs e)

 {

 double baseline;

 int indexOfPeak;

 int minimumIndicesBetweenPeaks;

 int numberOfPixels; // number of CCD elements/pixels provided by

 // the spectrometer

 double[] spectrum;

 int startingIndex;

 if (spectrometerIndex == -1)

 return; // no available spectrometer

 numberOfPixels = wrapper.getNumberOfPixels(spectrometerIndex);

 // Set some acquisition parameters and then acquire a spectrum

 wrapper.setIntegrationTime(spectrometerIndex, 500000);//.5 second

 wrapper.setBoxcarWidth(spectrometerIndex, 10);

 wrapper.setCorrectForElectricalDark(spectrometerIndex, 1);

 spectrum = (double[])wrapper.getSpectrum(spectrometerIndex);

 // Display the raw pixel values of this spectrum

 //for (int index = 0; index < numberOfPixels; ++index)

 //{

 // listBoxMessages.Items.Add("pixel[" + index + "] = " +

 // spectrum[index]);

 //}

 SPAM.CCoAdvancedPeakFinding advancedPeakFinding;

 advancedPeakFinding =

 spectralMath.createAdvancedPeakFindingObject();

 startingIndex = 0;

 minimumIndicesBetweenPeaks = 100;

 13: SPAM Library

000-20000-400-12-201505 95

 baseline = 100.0;

 do

 {

 indexOfPeak = advancedPeakFinding.getNextPeakIndex(spectrum,

 startingIndex, minimumIndicesBetweenPeaks, baseline);

 if (indexOfPeak == 0)

 break;

 listBoxMessages.Items.Add("index of peak = " + indexOfPeak);

 startingIndex = indexOfPeak;

 } while (indexOfPeak > 0);

 advancedPeakFinding.Dispose(); // this is necessary to avoid

 // memory leak

 listBoxMessages.Items.Add("all done");

 }

 private void buttonExit_Click(object sender, EventArgs e)

 {

 this.Close();

 }

 }

}

13: SPAM Library

96 000-20000-400-12-201505

000-20000-400-12-201505 97

Appendix A

FAQs

How fast can I acquire spectra?
The speed at which you can acquire spectra depends on the following factors:

 Minimum integration time

 Communication speed of the USB connection. Most PCs use USB 2.0, but some may still be

using USB 1.0, which is much slower.

 Number of pixels of data. Some detectors return as few as 256 pixels of data, others may return

up to 4096 pixels. Each pixel is transmitted as a 2-byte integer. The greater the number of pixels,

the longer it takes to transmit the data.

 Speed of your PC.

 The number of spectrometers operating in parallel.

Consider each of these factors carefully when estimating the maximum rate at which you can acquire

spectra on your PC. It is always best to perform actual real-world measurements.

The maximum possible spectral acquisition rate is achieved by use of the High-speed Data Acquisition

mode. This is a specialized mode that imposes certain restrictions to boost speed. Refer to the High

Speed Data Acquisition section for more information about this capability.

Why doesn’t getSpectrum() return when I think it
should?
When you set the integration time for a spectrometer, and then call getSpectrum(), you might expect

that the duration of the call to getSpectrum() would match the integration time exactly. This is rarely

the case, and there are several reasons why.

 When you first power-up the spectrometer by plugging it in to your PC, the spectrometer

immediately begins acquiring spectra using default settings for integration time and other

acquisition parameters. This is called Normal mode. As long as the spectrometer remains in

Normal mode, and remains plugged in to your PC, it will continuously acquire spectra.

When your application calls getSpectrum(), the spectrometer may be just beginning to

acquire a new spectrum, or it may be nearly finished acquiring a spectrum, or it may be anywhere

in between these two extremes. As a consequence, getSpectrum() may return almost

immediately, or it may not return until the full integration period has elapsed; it just depends on

how far along the spectrometer happened to be in its acquisition process at the moment you called

getSpectrum().

A: FAQs

98 000-20000-400-12-201505

If your application calls getSpectrum() repeatedly (in a tight loop), the duration of

subsequent calls to getSpectrum() will exactly match the integration time. This is because

once you have called getSpectrum(), you are effectively syncronized with the operation of

the spectrometer. Your first call to getSpectrum() will return at the exact moment that the

spectrometer has completed a spectrum acquisition. Your second call to getSpectrum()

occurs just as the spectrometer is beginning the next spectrum acquisition. Thus your second (and

all subsequent) call to getSpectrum() must wait for the full integration period to elapse

before the spectrometer has finished acquiring the next spectrum.

 There is a second reason why the duration of the getSpectrum() method may not match the

integration time setting. Whenever you change one of the acquisition parameters that can affect

the spectrum data (e.g., changing the integration time), OmniDriver will automatically take a

stability scan. This means OmniDriver will ignore the spectrum that was being acquired at the

moment when you called getSpectrum(). This spectrum was acquired using previous settings

for the acquisition parameters, and thus is invalid. OmniDriver will return the following spectrum,

which is based on the new acquisition parameter settings.

If I change spectrometer models, do I need to
change my program?
No. As long as you stay within the Wrapper API, your software does not need to be modified when you

change to a different type of Ocean Optics spectrometer.

However, keep in mind that certain features (e.g., “Thermo-electric Cooling”) are only available on

selected spectrometers. Refer to Optional Features for a list of features and which spectrometers support

each of them.

Can my 32-bit OmniDriver application run on 64-
bit Windows 7?
As of release 2.11, all of our 32-bit OmniDriver installers may be run on either 32-bit or 64-bit

Windows. This allows you to create a single 32-bit application that can run on both 32-bit and

64-bit Windows systems.

Prior to release 2.11 of OmniDriver it was necessary to use the following manual procedure

to install 32-bit OmniDriver on 64-bit Windows systems:

► Procedure

1. Install 64-bit OmniDriver. This is necessary to obtain the winusb driver.

 A: FAQs

000-20000-400-12-201505 99

2. Uninstall 64-bit OmniDriver. This will leave the winusb driver intact.

This step is optional, but it will help avoid confusion later on.

3. Install 32-bit OmniDriver.

4. In the C:\Program Files (x86)\Ocean Optics\OmniDriverSPAM\OOI_HOME directory:

a. Rename NatUSB.dll NatUSB_ezusb.dll

b. Rename NatUSB_winusb.dll NatUSB.dll

5. Build your app in 32-bit mode.

6. Run your application.

Can I use Visual Basic 6.0 (VB6) on 64-bit
Windows 7?
Yes and no.

The VB6 IDE will only run on 32-bit editions of Windows (XP, Vista, or Win 7).

If you install the 32-bit version of OmniDriver on 64-bit Windows 7, your VB6 app should run just fine

on 64-bit Windows 7. Your VB6 app may use either our “C” interface to OmniDriver or our “COM”

interface to OmniDriver. Both will work on 64-bit Windows 7.

See http://msdn.microsoft.com/en-us/vbasic/ms788708 for a very clear and comprehensive official

statement of Microsoft’s position regarding support for VB6 on XP, Vista, and Windows 7.

What happens if the timeout period is shorter
than the integration time?
Some of the calls to getSpectrum() will timeout, and some will return valid spectra. The ratio of valid

spectra to timeouts will depend on the ratio of your timeout period to the integration time. However, this

situation should not cause you to miss spectral acquisitions, unless the integration time is so short your

program cannot call getSpectrum() soon enough to capture the next spectrum.

What happens in the following scenario?
1. Set spectrometer to one of the external trigger modes

2. Call getSpectrum()

3. Timeout occurs before the trigger occurs

4. Trigger event happens before you call getSpectrum() a second time

5. Call getSpectrum()

http://msdn.microsoft.com/en-us/vbasic/ms788708

A: FAQs

100 000-20000-400-12-201505

The second call to getSpectrum() will return immediately with the spectrum that was acquired when the

trigger event occurred.

If multiple trigger events happen after the first getSpectrum() has timed-out and before you call

getSpectrum() a second time, when you do call getSpectrum() the second time, it immediately returns

with the spectrum from the FIRST trigger event. Data from any additional trigger events during this

window will be lost.

If a timeout occurs before the spectrum can be acquired, the spectral array returned by getSpectrum() will

contain all zeroes.

By default, the timeout period is set to “infinity”. If you set a non-zero timeout and later wish to turn-off

the timeout feature, you can do this by calling wrapper.setTimeout() with a value of zero. This causes

getSpectrum() to wait “forever”.

000-20000-400-12-201505 101

Appendix B

Upgrading Your Application for
OmniDriver 1.6

Overview
This appendix provides instructions for upgrading the following applications for OmniDriver 1.6:

 C/C++ Applications Using the C++ Interface to OmniDriver

 C# Applications

 C++ Applications Using the COM Interface to OmniDriver

 Visual Basic COM Applications

 The Visual Basic 6.0 (VB6) IDE only runs on 32-bit Windows platforms, and VB6 will only

generate 32-bit executables. However, you can still run these 32-bit executables on 64-bit

Windows 7 systems. To run your 32-bit VB6 application on a 64-bit Windows 7 system, you

must install the 32-bit version of OmniDriver on that Windows 7 system. See Appendix A: FAQ

“Can my 32-bit OmniDriver application run on 64-bit Windows 7?” for the correct procedure for

installing 32-bit OmniDriver on 64-bit Windows 7 systems.

 VB6 Applications Using the COM Interface

 VB6 Applications Using the “C” Interface

C/C++ Applications Using the C++ Interface to
OmniDriver

► Procedure

1. Define an environment variable named JAVA_HOME which points to the location where you

installed the Java JDK. For example: C:\Program Files\Java\jdk1.6.0_21. You should see a

directory named include directly beneath the JAVA_HOME directory.

2. You must restart your IDE after defining JAVA_HOME for this new environment variable to be

accessible.

3. You can then modify the properties of your Visual Studio project to use this environment variable

to specify the location of required header files. For example: $(JAVA_HOME)\include.

When you install OmniDriver 1.6, a new environment variable will be defined: OMNIDRIVER_HOME.

B: Upgrading Your Application for OmniDriver 1.6

102 000-20000-400-12-201505

OMNIDRIVER_HOME will be set to the value C:\Program Files\Ocean Optics\OmniDriverSPAM (or

wherever you have installed the OmniDriver product).You can then modify the properties of your Visual

Studio project to use this environment variable to specify the location of required header files. Example:

$(OMNIDRIVER_HOME)\include.

To build your C++ application, you must define following header file paths:

 $(OMNIDRIVER_HOME)\include

 $(JAVA_HOME)\include

 $(JAVA_HOME)\include\win32

You will also need the following library path:

 $(OMNIDRIVER_HOME)\OOI_HOME

You must also specify the following linker "Additional Dependencies"

 OmniDriver32.lib

 common32.lib

 optional: Spam32.lib

Note for 64-bit platform

If you are building your application to run on a 64-bit platform, change all library references to their 64-

bit form.

 OmniDriver64.lib

 common64.lib

 Spam64.lib

Troubleshooting

Symptom: UnsatisfiedLinkError: NatUSB.dll (can't find dependent libraries)

Solution: Uninstall the old driver for your spectrometer(s). Then reinstall your spectrometer using the

new WinUSB driver.

C# Applications
If you attempt to rebuild your 1.5 application after installing 1.6, you may get the error "The referenced

component 'OmniDriver' could not be found.” or “The type or namespace ‘OmniDriver’ could not be

found…”. Use the following procedure to prevent these errors.

► Procedure

To convert the OmniDriver 1.5 COM application to use the OmniDriver 1.6 .NET object/assembly,

use the following procedure:

1. Expand the References node in the Solution Explorer for your project.

 B: Upgrading Your Application for OmniDriver 1.6

000-20000-400-12-201505 103

2. Right-click on OmniDriver and choose Remove.

3. Right-click on References and choose Add Reference.

4. Click on the Browse tab.

5. Navigate to the OOI_HOME directory. Highlight NETOmniDriver.dll, and click OK.

6. You may need to do the same for NETSpam.dll if your application uses functions from the

SPAM library.

7. If you attempt to rebuild your application at this point, you will see errors like

"The type of namespace name 'CCoWrapperClass' does not exist in the namespace 'OmniDriver

(are you missing an assembly reference?)"

To solve this... replace "CCoWrapperClass" with "CCoWrapper".

8. Remove calls to the wrapper.CreateWrapper() method. It is no longer necessary to call this

method.

Note

It is still necessary to call the CreateObjectName() methods for SPAM objects

which take one or more arguments. For example, you should continue to call the method

CIELAB.CreateCIELAB(myCIEColorObject) because it takes an argument.

But you do not need to call AdvancedColor.CreateAdvancedColor() because

it does not take an argument.

9. When you rebuild your application, you may see one of the following error messages:

"Operator '= =' cannot be applied to operands of type 'short' and 'bool', or “The best overloaded

method match for SOME_METHOD() has some invalid arguments”.

The solution is simply to replace the true/false symbolic values with 1 or 0, respectively.

C++ Applications Using the COM Interface to
OmniDriver
You must add a reference to the new .NET assembly.

1. Click on menu item Project | References…

2. Expand Common Properties and click on References.

3. Click the Add Path button.

4. Browse to the OOI_HOME directory and add the NETOmniDriver.dll.

Visual Basic COM Applications
This section contains the procedure to convert Visual Basic COM Applications to use the OmniDriver 1.6

.NET object/assembly.

B: Upgrading Your Application for OmniDriver 1.6

104 000-20000-400-12-201505

If you attempt to rebuild your 1.5 application after installing OmniDriver 1.6, you may get the error

"Cannot load type library for reference 'OmniDriver'…”or “The referenced component ‘OmniDriver’

could not be found.” Use the following procedure to prevent these errors.

► Procedure

1. Remove the reference to the old OmniDriver COM object (if necessary):

a. In the Solution Explorer window, expand the References node. If the References

node is not visible, try rebuilding your application (it will report the above-mentioned

error). This will cause the References node to appear in the Solution Explorer

window.

If the References node does not appear, it means the IDE cannot find the old

reference. In this case there is nothing that you need remove, so proceed to Step 2

below.

b. Click on the “OmniDriver” reference and choose “Remove”.

2. Click on the menu item Project | Add Reference.

3. Click on the Browse tab of the Add Reference dialog box.

4. Navigate to the OOI_HOME directory and highlight NETOmniDriver.dll

(typically located in C:\Program Files\Ocean Optics\OmniDriver\OOI_HOME). Click OK.

To declare an instance of the new OmniDriver .NET assembly:

Dim wrapper As New OmniDriver.CCoWrapper

Remove all calls to wrapper.CreateWrapper(): This method is no longer needed. However, you should

continue to call the “Create” methods for SPAM objects when these “Create” methods accept one or more

parameters.

VB6 Applications

Caution: VB6 Limitation

The Visual Basic 6.0 (VB6) IDE only runs on 32-bit Windows platforms, and VB6

will only generate 32-bit executables. However, you can still run these 32-bit

executables on 64-bit Windows 7 systems. To run your 32-bit VB6 application on a

64-bit Windows 7 system, you must install the 32-bit version of OmniDriver on that

Windows 7 system. See Appendix A: FAQ “Can my 32-bit OmniDriver application

run on 64-bit Windows 7?” for the correct procedure for installing 32-bit

OmniDriver on 64-bit Windows 7 systems.

 B: Upgrading Your Application for OmniDriver 1.6

000-20000-400-12-201505 105

 VB6 Applications Using the COM Interface

If you try to make an EXE without changing the reference to the OmniDriver COM object, you will see

the following error message:

This error message is associated with your declaration(s) of OmniDriver COM objects. Click OK and

then the References dialog box will appear:

► Procedure

To solve this problem:

1. Uncheck the reference to the obsolete OmniDriver type library.

2. Select Project | References.

3. Click the Browse button.

4. Navigate to OOI_HOME directory, highlight NETOmniDriver.tlb, and click Open.

5. Scroll down in the list of available references and check OmniDriver .NET interface.

B: Upgrading Your Application for OmniDriver 1.6

106 000-20000-400-12-201505

6. If you are using SPAM functions, you will also need to add a reference to the new NETSpam.tlb

type library following Steps 1-5.

Change Dim wrapper as New OmniDriver.CCoWrapper to Dim wrapper as new CCoWrapper.

Change Dim wrapperExtensions as OmniDriver.CCoWrapperExtensions to Dim wrapperExtensions as

CCoWrapperExtensions.

Make similar changes to any other OmniDriver objects which you have declared in your application.

Remove all calls to wrapper.CreateWrapper(). This method is no longer needed. However, you should

continue to call the “Create” methods for SPAM objects when these “Create” methods accept one or more

parameters.

You may see the following error message:

To solve this error, append “_2” to the method name. Or, if the “_2” was already present, remove it.

Alternatively, you can solve this error by adding the channelIndex argument following the

spectrometerIndex argument. Be sure to set the channelIndex argument to zero since this was the

previous default setting that your application expects.

VB6 Applications Using the “C” Interface

If you try to make an EXE without changing the reference to the OmniDriver COM object, you will see

the following screen:

 B: Upgrading Your Application for OmniDriver 1.6

000-20000-400-12-201505 107

► Procedure

To solve this problem:

1. Uncheck MISSING: OmniDriver 2.0 Type Library and click OK.

2. Select Project | References.

3. Click the Browse button.

4. Navigate to OOI_HOME directory, highlight NETOmniDriver.tlb, and click OK

5. If you are using SPAM functions, you will also need to add a reference to the NETSpam.tlb type

library.

Change Dim wrapper as New OmniDriver.CCoWrapper to Dim wrapper as new CCoWrapper.

Change Dim wrapperExtensions as OmniDriver.CCoWrapperExtensions to Dim wrapperExtensions as

CCoWrapperExtensions.

Make similar changes to any other OmniDriver objects which you have declared in your application.

Remove all calls to wrapper.CreateWrapper(). This method is no longer needed.

However, you should continue to call the “Create” methods for SPAM objects when these “Create”

methods accept one or more parameters.

B: Upgrading Your Application for OmniDriver 1.6

108 000-20000-400-12-201505

000-20000-400-12-201505 109

Appendix C

Programming the ARCoptix
Spectrometer

Overview
This appendix provides information for programming the ARCoptix ANIR Series of Fourier Transform

Spectrometers (FTS).

Example
Before you can use your ARCoptix spectrometer, you must download and install SpectraSuiteHub.msi

installer. This is the SpectraSuite Hub Controller application. Install this software on the PC to which you

intend to connect your ARCoptix unit.

► Procedure

1. Download the installer from the Ocean Optics Software Downloads page:

http://www.oceanoptics.com/technical/softwaredownloads.asp. The SpectraSuite Hub

Controller installer is located under Operating Software.

2. Plug your ARCoptix spectrometer into your PC.

3. After installing the SpectraSuite Hub Controller, invoke it by double-clicking on the

desktop icon labeled SpectraSuiteHub Controller.

NOTE

If you are running on Windows 7 or later, you must right-click on the desktop icon and

choose Run as administrator.

4. Click the Check Status button. If it reports “The SpectraSuite Hub service is installed

but it is NOT currently running”, click the Start Service button. Then make a note of the

IP address and port number. These addresses will be needed by your application when it

calls the ArcoptixTransport.connectToHub() method.

 A C++ sample named vs2005_cpp_cpp_ArcoptixDemo is provided in the Sample Pack to

illustrate how to control the Arcoptix spectrometer from your OmniDriver-based application.

C: Programming the ARCoptix Spectrometer

110 000-20000-400-12-201505

 int numberOfDiscoveredSpectrometers;

 String serialNumber;

 boolean success;

 ArcoptixTransport anir;

 anir = new ArcoptixTransport();

 success = anir.connectToHub("10.120.19.134",7654); // replace the IP

address

 if (success == false)

 {

 System.out.println("ERROR: unable to connect to the ARCOhub");

 return;

 }

 System.out.println("We successfully connected to the ARCOhub");

 anir.nop();

 numberOfDiscoveredSpectrometers =

anir.getNumberOfDiscoveredSpectrometers();

 if (numberOfDiscoveredSpectrometers == 0)

 {

 System.out.println("No spectrometers were discovered, exiting.");

 anir.disconnect();

 }

 System.out.println("number of discovered spectrometers = " +

numberOfDiscoveredSpectrometers);

 serialNumber = anir.getSerialNumber(0); // arbitrarily claim the

first spectrometer in the list

 success = anir.claimSpectrometer(serialNumber);

 if (success == false)

 {

 System.out.println("claimSpectrometer() failed");

 anir.disconnect();

 return;

 }

 System.out.println("claimSpectrometer() was successful");

 anir.setGain(0); // 0=low, 1=medium, 2=high, 3=extreme

 System.out.println("gain initially set to " + anir.getGain());

 anir.setGain(3); // 0=low, 1=medium, 2=high, 3=extreme

 System.out.println("gain now set to " + anir.getGain());

 double[] spectrumPixelArray;

 spectrumPixelArray = anir.getSpectrum();

 if (spectrumPixelArray == null)

 {

 System.out.println("ERROR: returned spectrum array is null");

 } else {

 System.out.println("number of pixels = " +

spectrumPixelArray.length);

 System.out.println("saturation = " + anir.getSaturationRatio());

 for (int index=0; index<10; ++index)

 {

 C: Programming the ARCoptix Spectrometer

000-20000-400-12-201505 111

 System.out.println("pixel[" + index + "] = " +

spectrumPixelArray[index]);

 }

 }

 System.out.println("Hit <cr> to exit");

 try {

 System.in.read();

 } catch (IOException ex) {

 // ignored

 }

 System.out.println("Now exiting");

 anir.disconnect();

C: Programming the ARCoptix Spectrometer

112 000-20000-400-12-201505

000-20000-400-12-201505 113

Appendix D

Controlling Memory Size

Overview
This appendix provides information for controlling the memory size of Java and your application.

Description
By default, the Java JVM will use up to 80mb of RAM/memory. If your application requires more RAM,

you can increase (or decrease) this setting by creating a file named jvm_option.memorysize in the

OOI_HOME directory. The contents of this file should be a text string like the following: -Xmx250m

The “250m” instructs the JVM to use up to 250 megabytes of RAM. You can set this number to higher or

lower values, depending on the needs of your application and the amount of available RAM. Be careful

when you do this, as an invalid option string will prevent your application from running.

D: Controlling Memory Size

114 000-20000-400-12-201505

000-20000-400-12-201505 115

Appendix E

Improving OmniDriver
Performance on Windows

Overview
This appendix contains suggestions for improving the performance of OmniDriver on Windows systems.

Suggestions
Windows is not a real-time operating system and cannot guarantee a level of responsiveness. But there

are a few things you can do to improve the performance of your application.

 You can increase the priority of the thread in which getSpectrum() is called. However, this only

affects the priority of that thread WITHIN your application, and not relative to OTHER

applications running on Windows. Often the problem is that some other application (or Windows

service) is performing activity which interferes with the speed of your application.

Try setting the priority of your OmniDriver application to "RealTime". To do this:

5. Type control+alt+delete to bring up the Windows Task Manager.

6. Select the Processes tab.

7. Right-click on your OmniDriver application and choose Set Priority | RealTime.

 Determine what applications and services are running on your PC and shut down all unnecessary

applications. If you have a backup utility such as Carbonite, you should pause it. Check your

anti-virus application to see if it is configured in some way that might result in bursts of disk I/O.

 If bursts of disk I/O are interfering with your application, there is a good chance this disk I/O is

due to "page faults". Page faults occur when Windows does not have enough RAM/memory to

run all of the applications that are currently active. So Windows “borrows” some disk space to

"simulate" additional RAM. If this causes your OmniDriver application a problem, then the

solution is to either shut down as many applications as possible, or to install additional RAM.

 Try running your application on another PC that has nothing else installed.

E: Improving OmniDriver Performance on Windows

116 000-20000-400-12-201505

000-20000-400-12-201505 117

Appendix F

Using the Timeout Feature

Overview
The Timeout feature allows you to set a timeout period on calls to getSpectrum(). This is especially useful

when using external trigger modes. Formerly, when a spectrometer was set to an external trigger mode, it

was impossible to escape from that mode until an actual trigger signal occurred. Using the new Timeout

feature, you can regain control of the spectrometer even if a trigger signal never occurs. You set the

duration of the timeout period. After getSpectrum() has waited for the full timeout period, it will return to

the caller even if no trigger has occurred.

Installation
Follow the normal procedure for installing OmniDriver on your system. Then perform the steps in the

following section only if you are developing on a 32-bit Windows system.

IMPORTANT: Converting to the WinUSB Driver
(32-bit systems only)
After installing OmiDriver, some additional installation steps are necessary if you are using any of the 32-

bit Windows platforms (XP, Vista, or Windows 7).

These steps are necessary because the new timeout feature is only supported by the WinUSB driver, not

by the ezusb.sys driver. By default, 32-bit Windows platforms use the older ezusb.sys driver.

► Procedure

1. In C:\Program Files\Ocean Optics\OmniDriverSPAM\OOI_HOME,

a. Delete NatUSB.dll

b. Copy or rename “NatUSB_32_winusb.dll” to “NatUSB.dll”

2. If you are using SpectraSuite on the same 32-bit PC, you must manually replace SpectraSuite’s

NatUSB.dll file with the NatUSB_32_winusb.dll mentioned in Step 1. Otherwise, SpectraSuite

will no longer recognize any of your spectrometers. This step is only necessary on 32-bit

Windows systems. To do this:

a. cd C:\Program Files\Ocean Optics\OmniDriverSPAM\OOI_HOME

F: Using the Timeout Feature

118 000-20000-400-12-201505

b. Copy NatUSB_32_winusb.dll to

C:\Program Files\Ocean Optics\SpectraSuite\spectrasuite\lib, renaming it to NatUSB.dll

c. Switch your spectrometer over to the WinUSB driver (follow the detailed steps below).

Manually Switching Your Spectrometer Over to
the WinUSB Driver
You must perform the following procedure if you are developing on 32-bit Windows platforms (XP,

Vista, and Windows 7) because the new timeout feature is only supported by the WinUSB driver, not by

the ezusb.sys driver. By default, 32-bit Windows platforms use the older ezusb.sys driver, which does not

support the new timeout feature.

Notes

This solution only applies to Windows (32-bit and 64-bit architectures), not Linux or

MacOSX.

This solution only works with the WinUSB driver, not with the ezusb driver. Once you

have installed WinUSB, your Windows system cannot revert back to ezusb! If you

are on a 32-bit system, and you are using SpectraSuite as well as OmniDriver, you will

need to manually copy OmniDriver’s NatUSB.dll into the SpectraSuite install directory.

Otherwise, SpectraSuite will no longer be able to detect any spectrometers. The

installation instructions explain how to perform this step.

This solution only works for USB devices. It does not apply to network-attached

spectrometers such as the Jaz.

The USBProgrammer utility does not work with the WinUSB driver. You cannot use this

utility on systems using WinUSB. USBProgrammer only works on systems using the

older ezusb driver.

The steps shown below are for Windows XP 32-bit. The exact procedure will be slightly different for

Windows Vista 32-bit and Windows 7 32-bit systems.

► Procedure

1. Open the Device Manager window by selecting Control Panel | System | Hardware tab |

Device Manager button.

2. Right-click on your spectrometer and choose Update Driver.... The Hardware Update Wizard

appears.

 F: Using the Timeout Feature

000-20000-400-12-201505 119

3. On the first screen of the Hardware Update Wizard, select No, not this time and click Next.

F: Using the Timeout Feature

120 000-20000-400-12-201505

4. On the next hardware Update Wizard screen, choose Install from a list of specific location

(Advanced) and click Next.

5. Choose Include this location in the search and browse to

C:\Program Files\Ocean Optics\OmniDriverSPAM\winusb_driver. Then click Next.

The software installation process begins.

 F: Using the Timeout Feature

000-20000-400-12-201505 121

Programming the Timeout Feature
To set the timeout, call wrapper.setTimeout(int timeoutMilliseconds).

To determine if a timeout has occurred, you must call wrapper.isTimeout(int spectrometerIndex, int

channelIndex) after the wrapper.getSpectrum() method returns control to your application. If a timeout

has occurred, the returned spectrum will be set to all zeroes, and isTimeout() will return TRUE.

Caution

If your timeout setting is shorter than the integration time, your call to

getSpectrum() may time-out.

Example of Typical Usage of the Timeout Feature

When calling getSpectrum(), if a timeout occurs before your external trigger event occurs, you can simply

call getSpectrum() again and continue to wait for the trigger event. Typical logic is shown below:

wrapper.setIntegrationTime()

wrapper.setExternalTriggerMode() // choose some external hardware

trigger mode

wrapper.setTimeout()

while (keepWaitingForTrigger() == true) // you implement the

keepWaitingForTrigger() method

{

wrapper.getSpectrum()

if (wrapper.isTimeout() == true)

 continue; // timeout occurred, go to top of loop and try

again

// Don’t forget to check for a valid spectrum result !!

If (wrapper.getWrapperExtensions().isSpectrumValid() ==

false)

{

 // Your error handler

 …

}

// Process valid spectrum

…

}

F: Using the Timeout Feature

122 000-20000-400-12-201505

Notes

The timeout setting applies to all channels of the spectrometer. It is not possible to set

different timeout values for each channel.

If your application uses multi-threading, you must be careful to restrict all references to a

given spectrometer to a single thread. You cannot acquire spectra from the same

spectrometer from multiple threads. This restriction has always been the case for

OmniDriver. This means that all channels of multi-channel spectrometers must be

referenced from a single thread. See Chapter 8: Using OmniDriver with Multithreaded

Applications for more details.

When switching your spectrometer trigger mode from Normal mode to one of the

external trigger modes, you may need to call getSpectrum() once to “flush” out the

spectrum acquisition that occurred immediately prior to switching modes. This can

happen because in Normal mode, the spectrometer is continuously acquiring spectra, so

when you switch modes, the spectrometer will probably be in the middle of acquiring a

spectrum. This spectrum will be returned by the next call you make to getSpectrum(), but

this spectrum was not acquired as a result of an actual external trigger signal.

Timeout Feature Troubleshooting Notes

Problem Possible Cause(s) Suggested Solution(s)

Your application cannot detect any
spectrometers.

A failure to copy
NatUSB_32_winusb.dll to NatUSB.dll
in the OOI_HOME directory.

See IMPORTANT:
Converting to the
WinUSB Driver (32-bit
systems only).

UnsatisfiedLinkError …
NatUSBSetTimeout()

If using a Windows 32-bit system, you
need to manually switch your
computer to the newer WinUSB driver.

See Manually Switching
Your Spectrometer Over
to the WinUSB Driver.

000-20000-400-12-201505 123

Appendix G

Customized Branding of
OmniDriver

Overview
OmniDriver versions 2.20 and later now allow you to override the company name and product name

displayed during the installation process. Additionally, the folder where OmniDriver is installed will

reflect the company and product name you specify.

The following is an example of the command line syntax to supply your own company and product name

(all on one line):

OmniDriver-2.20-win64-redistributable-installer.exe --company_name “ACME Company”

--product_name “RoadRunner Exterminator Kit”

Pay special attention – there are TWO dashes preceeding each of the new command-line parameters.

Caution

The company name and product name you specify may NOT contain embedded

spaces.

It is not necessary for you to supply the new command line parameters if you want to leave company and

product name set to their default values of “Ocean Optics” and “OmniDriver” respectively. If you wish,

you may specify only one or the other of these two parameters.

Notes

All OmniDriver and SPAM installers have been digitally signed. Consequently, the end

user will be presented with a pop-up security window indicating the installer has been

signed by Ocean Optics.

Only the redistributable installers have been modified to allow you to override company

and product name. The development installers do not offer this flexibility.

DLL files belonging to OmniDriver will still have names such as “OmniDriver64.dll” or

“NETOmniDriver.dll.”

G: Customized Branding of OmniDriver

124 000-20000-400-12-201505

000-20000-400-12-201505 125

Index

A
acquire spectrum, 27

acquisition parameters

set, 27

ADC1000-USB A/D Converter

multithreading, 50

Analog

In, 34

Out, 34

architecture, 4

ARCoptix spectrometer

programming, 109

auto toggle, 29

B
basic sequence of operations, 25

Board Temperature, 34

boxcar width, 29

branding, 123

breakout box, 36

C
C

samples, 71

C#

deploying, 61, 84

developing in, 60

samples, 74

C# applications

upgrading for OmniDriver 1.6, 102

C/C++

developing in, 54

developing in with the National Instruments

CVI C Compiler, 58

C/C++ applications using the C++ interface to

OmniDriver

upgrading for OmniDriver 1.6, 101

C++

samples, 72

C++ applications using the COM interface to

OmniDriver

upgrading for OmniDriver 1.6, 103

close spectrometers, 28

Continuous Strobe, 34

correct

detector nonlinearity, 30

electrical dark, 30

cross-platform, 1

D
Delphi

developing in, 61

samples, 76

deploying

C# application, 61, 84

developing

in C#, 60

in C/C++, 54

in Delphi, 61

in Java, 63

in LabVIEW, 63

in VBA, 64

in Visual Basic, 66

development environment, 53

devices supported, 2

document

audience, vii

purpose, vii

summary, vii

documentation, viii

driver

uninstalling incorrect, 22

Index

126 000-20000-400-12-201505

E

electrical dark, 30

extended functions controlled, 4

External Software Trigger mode, 45

External Synchronization Trigger mode, 46

external trigger

External Software mode, 45

External Synchronization mode, 46

Normal mode, 45

Single Shot mode, 46

External Trigger Delay, 36

external trigger modes, 45

F
FAQs, 97

features, 2

optional, 33

G
GPIO, 36

H
Hardware Trigger mode, 46

high speed data acquisition, 47

function call sequence, 47

HighRes timing, 2

HR4 breakout box, 36

I
identify spectrometer, 27

installation

.NET framework, 8

Java, 22, 23

Linux, 12

Mac OSX, 11

QE Pro spectrometer driver, 17

QE Pro spectrometer driver on Windows 7

(32 and 64-bit), 20

QE Pro spectrometer driver on Windows XP

(32 and 64-bit), 18

spectrometer driver, 14

spectrometer driver on Windows 7 (64-bit),

16

spectrometer driver on Windows XP (64-bit),

14

troubleshooting, 23

via DVD, 13

via website, 9

Windows, 9

Windows 8.1 32-bit, 9

integation time, 30

interface methods, 2

introduction, 1

Irradiance Calibration Factor, 40

J

Java, 4

controlling memory size, 113

developing in, 63

installation, 22, 23

JDK for 64-bit systems, 23

samples, 76

Java header files

specify location, 59

L
LabVIEW

developing in, 63

development, 4

multithreading, 50

samples, 79

support, 2

language support, 1

Linux

redistributing OmniDriver, 84

Linux platform installation, 12

troubleshooting, 13

long long data type issue, 60

 Index

000-20000-400-12-201505 127

M
Mac

redistributing OmniDriver, 84

Mac OSX platform installation, 11

measurement corrections, 3

memory

controlling size, 113

modifying C++ settings for 64-bit Windows, 68

multithreaded applications, 49

ADC1000-USB A/D Converter, 50

exceptions to guidelines, 50

guidelines, 49

LabVIEW, 50

N
NetBeans setup on Linux, 53

nonlinearity

correct, 30

Nonlinearity Correction, 40

Normal mode, 45

O
OmniDriver

developing, 53

OmniDriver performance

improving on Windows, 115

OmniDriver32.dll files

specify location, 59

open all spectrometers, 26

operating systems supported, 3

optional features, 33

other samples, 82

P
parameters

acquisition, 29

Q
QE Pro spectrometer driver

installation on Windows 7 (32 and 64-bit), 20

installation on Windows XP (32 and 64-bit),

18

Quasi Realtime mode, 46

R
redistributing OmniDriver, 83

Linux, 84

Mac, 84

S
sample programs, 71

scans to average, 31

Single Shot Trigger mode, 46

Single Strobe, 40

SPAM

samples, 81

SPAM library, 91

spectrometer

close, 28

identify, 27

spectrometer driver

installation on QE Pro, 17

installation on Windows 7 (64-bit), 16

installation on Windows XP (64-bit), 14

spectrometers

discover, 26

SPI Bus, 40

Stray Light Correction, 42

strobe enable, 31

strobe lamp enable, 29

auto toggle, 29

subdirectories, 7

support

devices, 2

LabVIEW, 2

operating systems, 3

Index

128 000-20000-400-12-201505

T
Thermo Electric Cooling, 42

timeout

troubleshooting, 122

Timeout feature, 117

troubleshooting

installation, 23

timeout feature, 122

U
upgrades, viii

upgrading for OmniDriver 1.6, 101

C# applications, 102

C/C++ applications using the C++ interface to

OmniDriver, 101

C++ applications using the COM interface to

OmniDriver, 103

VB6 applications, 104

VB6 applications using the C interface, 106

VB6 applications using the COM interface,

105

Visual Basic COM applications, 103

USB port, 5

V
VB6 applications

upgrading for OmniDriver 1.6, 104

VB6 applications using the C interface

upgrading for OmniDriver 1.6, 106

VB6 applications using the COM interface

upgrading for OmniDriver 1.6, 105

VBA

developing in, 64

Version, 43

Visual Basic

developing in, 66

samples, 80

Visual Basic COM applications

upgrading for OmniDriver 1.6, 103

W
what's new, vii

Windows 8.1 32-bit platform installation, 9

Windows platform installation, 9

wrapper API reference, 85

wrapper object, 5

create, 25

